Xia X, Pant A, Ganas AS, Jelezko F, Pauzauskie PJ. Quantum Point Defects for Solid-State Laser Refrigeration.
ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021;
33:e1905406. [PMID:
32666603 PMCID:
PMC11469022 DOI:
10.1002/adma.201905406]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/29/2020] [Accepted: 03/05/2020] [Indexed: 05/28/2023]
Abstract
Herein, the role that point defects have played over the last two decades in realizing solid-state laser refrigeration is discussed. A brief introduction to the field of solid-state laser refrigeration is given with an emphasis on the fundamental physical phenomena and quantized electronic transitions that have made solid-state laser-cooling possible. Lanthanide-based point defects, such as trivalent ytterbium ions (Yb3+ ), have played a central role in the first demonstrations and subsequent development of advanced materials for solid-state laser refrigeration. Significant discussion is devoted to the quantum mechanical description of optical transitions in lanthanide ions, and their influence on laser cooling. Transition-metal point defects have been shown to generate substantial background absorption in ceramic materials, decreasing the overall efficiency of a particular laser refrigeration material. Other potential color centers based on fluoride vacancies with multiple potential charge states are also considered. In conclusion, novel materials for solid-state laser refrigeration, including color centers in diamond that have recently been proposed to realize the solid-state laser refrigeration of semiconducting materials, are discussed.
Collapse