1
|
Fu H, Chen Z, Chen X, Jing F, Yu H, Chen D, Yu B, Hu YH, Jin Y. Modification Strategies for Development of 2D Material-Based Electrocatalysts for Alcohol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306132. [PMID: 38044296 PMCID: PMC11462311 DOI: 10.1002/advs.202306132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Indexed: 12/05/2023]
Abstract
2D materials, such as graphene, MXenes (metal carbides and nitrides), graphdiyne (GDY), layered double hydroxides, and black phosphorus, are widely used as electrocatalyst supports for alcohol oxidation reactions (AORs) owing to their large surface area and unique 2D charge transport channels. Furthermore, the development of highly efficient electrocatalysts for AORs via tuning the structure of 2D support materials has recently become a hot area. This article provides a critical review on modification strategies to develop 2D material-based electrocatalysts for AOR. First, the principles and influencing factors of electrocatalytic oxidation of alcohols (such as methanol and ethanol) are introduced. Second, surface molecular functionalization, heteroatom doping, and composite hybridization are deeply discussed as the modification strategies to improve 2D material catalyst supports for AORs. Finally, the challenges and perspectives of 2D material-based electrocatalysts for AORs are outlined. This review will promote further efforts in the development of electrocatalysts for AORs.
Collapse
Affiliation(s)
- Haichang Fu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Zhangxin Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Xiaohe Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Fan Jing
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Hua Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Dan Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Binbin Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Yun Hang Hu
- Department of Materials Science and EngineeringMichigan Technological UniversityHoughtonMI49931USA
| | - Yanxian Jin
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| |
Collapse
|
2
|
Saghebasl S, Amini H, Nobakht A, Haiaty S, Bagheri HS, Hasanpour P, Milani M, Saghati S, Naturi O, Farhadi M, Rahbarghazi R. Polyurethane-based nanofibrous mat containing porphyrin with photosensitivity and bactericidal properties can promote cutaneous tissue healing in rats. J Nanobiotechnology 2023; 21:313. [PMID: 37661273 PMCID: PMC10476421 DOI: 10.1186/s12951-023-02082-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The regeneration of cutaneous tissue is one of the most challenging issues in human regenerative medicine. To date, several studies have been done to promote cutaneous tissue healing with minimum side effects. The healing potential of polyurethane (PU)/Poly (caprolactone)-poly (ethylene glycol)-poly (caprolactone) (PCEC)/chitosan (CS) (PCS) nanofibrous mat with cationic photosensitizer meso tetrakis (N-methyl pyridinium-4-yl) porphyrin tetratosylate salt (TMP) was examined. The CS tripolyphosphate nanoparticles (CSNPs) were prepared and loaded by TMP to provide an efficient drug release system (TMPNPs) for delivery of TMP to promote wound healing. In in vitro setting, parameters such as bactericidal effects, cytocompatibility, and hemolytic effects were examined. The healing potential of prepared nanofibrous mats was investigated in a rat model of full-thickness cutaneous injury. PCS/TMP/TMPNPs nanofibers can efficiently release porphyrin in the aqueous phase. The addition of TMPNPs and CS to the PU backbone increased the hydrophilicity, degradation, and reduced mechanical properties. The culture of human fetal foreskin fibroblasts (HFFF2) on PCS/TMP/TMPNPs scaffold led to an increased survival rate and morphological adaptation analyzed by MTT and SEM images. Irradiation with a red laser (635 nm, 3 J/cm2) for the 30 s reduced viability of S. aureus and E. Coli bacteria plated on PCS/TMP and PCS/TMP/TMPNPs nanofibrous mats compared to PU/PCEC (PC) and PU/PCEC/CS (PCS) groups, indicating prominent antibacterial effects of PCS/TMP and PCS/TMP/TMPNPs nanofibrous (p < 0.05). Data indicated that PCS/TMP/TMPNPs mat enhanced healing of the full-thickness excisional wound in a rat model by the reduction of inflammatory response and fibrotic changes compared to the PC, and PCS groups (p < 0.05). Immunofluorescence imaging indicated that levels of Desmoglein were increased in rats that received PCS/TMP/TMPNPs compared to the other groups. It is found that a PU-based nanofibrous mat is an appropriate scaffold to accelerate the healing of injured skin.
Collapse
Affiliation(s)
- Solmaz Saghebasl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of General and Vascular Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Nobakht
- Research Center of Biosciences & Biotechnology (RCBB), University of Tabriz, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Parisa Hasanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ozra Naturi
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mehrdad Farhadi
- Department of Anatomical and Clinical Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Sardivand-Chegini I, Zakavi S, Rezvani MA. Periodate-Mediated Aerobic Oxidation of Sulfides over a Bifunctional Porphyrin-polyoxometalate Catalyst: Photosensitized Singlet Oxygen Oxidation of Iodate to Periodate. Inorg Chem 2023; 62:13387-13399. [PMID: 37560902 DOI: 10.1021/acs.inorgchem.3c01740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Regeneration of terminal oxidants by molecular oxygen in metal-catalyzed oxidations of organic substrates has the advantage of avoiding the use of stoichiometric amounts of hazardous and/or expensive reagents to meet (some of) the green chemistry requirements. In the present study, photosensitized singlet oxygen oxidation of iodate to periodate has been used to regenerate the oxidant in polyoxometalate (POM)-catalyzed oxidation of sulfides to sulfoxides with periodate in water. To the best of our knowledge, it is the first report on singlet oxygen oxidation of iodate to periodate. In order to determine the contribution of photooxidation and oxidation pathways in the formation of sulfoxide, the oxidation of diphenyl sulfide with a very low reactivity toward aerobic photooxidation was studied; a sevenfold increase in the conversion of the sulfide to the diphenyl sulfoxide was observed for the reaction conducted in the presence of H2TMPyP-PW12O40/IO3-/O2/hν compared to that in the presence of H2TMPyP-PW12O40/O2/hν. Also, under the same conditions, a ca. 1.5-fold increase was observed in the case of methyl phenyl sulfide, which shows high reactivity toward both the oxidation and photooxidation reactions. A porphyrin-POM nanocomposite formed by the electrostatic immobilization of meso-tetra(N-methylpyridinium-4-yl)porphyrin (H2TMPyP) on PW12O40 was employed for the one-pot oxidation and photooxidation reactions. Field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), diffuse-reflectance UV-vis spectroscopy, thermal gravimetric analysis, and Fourier transform infrared were used to characterize the formation of the hybrid compound. An average particle size of 42 nm was estimated for H2TMPyP-PW12O40 from XRD peak broadening using the Scherrer equation. Also, FESEM images showed the formation of nearly spherical nanoparticles with a size of ca. 200 nm. The redshift of the Soret band of H2TMPyP upon immobilization on POM was attributed to strong N-H···O hydrogen-bond interactions between POM and porphyrin.
Collapse
Affiliation(s)
- Issa Sardivand-Chegini
- Department of Chemistry, Faculty of Science, University of Zanjan, University Blvd., Zanjan 45371-38791, Iran
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Saeed Zakavi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Mohammad Ali Rezvani
- Department of Chemistry, Faculty of Science, University of Zanjan, University Blvd., Zanjan 45371-38791, Iran
| |
Collapse
|
4
|
Kobaisy AM, Elkady MF, Abdel-Moneim AA, El-Khouly ME. Surface-decorated porphyrinic zirconium-based metal-organic frameworks (MOFs) using post-synthetic self-assembly for photodegradation of methyl orange dye. RSC Adv 2023; 13:23050-23060. [PMID: 37529362 PMCID: PMC10388159 DOI: 10.1039/d3ra02656f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
We report herein the surface decoration of a water-soluble free-base porphyrin, namely, 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin-tetra(p-toluenesulfonate) (H2TMPyP), over three different zirconium-based metal-organic frameworks of different linker structure and functionality; namely UiO66, UiO66-NH2, and MIP-202, via self-assembly. The synthesized MOFs along with the resulting complexes have been characterized via spectroscopic and analytical techniques (XRD, FT-IR, TEM, N2 adsorption/desorption, and laser scanning confocal microscopy). The self-assembly of H2TMPyP with the examined three MOFs was observed by using the steady-state absorption and fluorescence, as well as the fluorescence lifetime studies. It was evident that the highest complex interaction was recorded between porphyrin and UiO-66-NH2 compared with the lowest interactions between porphyrin and MIP-202. This is in good agreement with the high surface area and pore volume of UiO-66 (1100 m2 g-1 and 0.68 cm3 g-1) and compared to that of MIP-202 (94 m2 g-1 and 0.26 cm3 g-1). The photocatalytic activities of the three porphyrin entities immobilized zirconium-based MOFs were compared toward methyl orange dye degradation from aqueous solution under visible light irradiation (λex = 430 nm). The photocatalytic studies render the fabrication of the self-assembled H2TMPyP@UiO-66-NH2 composite as a promising material for dye degradation from polluted wastewater.
Collapse
Affiliation(s)
- Ahmed M Kobaisy
- Nanoscience Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria Egypt
| | - Marwa F Elkady
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria Egypt
| | - Ahmed A Abdel-Moneim
- Nanoscience Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria Egypt
| | - Mohamed E El-Khouly
- Nanoscience Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria Egypt
| |
Collapse
|
5
|
Xiao YX, Ying J, Liu HW, Yang XY. Pt-C interactions in carbon-supported Pt-based electrocatalysts. Front Chem Sci Eng 2023:1-21. [PMID: 37359291 PMCID: PMC10126579 DOI: 10.1007/s11705-023-2300-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/04/2023] [Indexed: 06/28/2023]
Abstract
Carbon-supported Pt-based materials are highly promising electrocatalysts. The carbon support plays an important role in the Pt-based catalysts by remarkably influencing the growth, particle size, morphology, dispersion, electronic structure, physiochemical property and function of Pt. This review summarizes recent progress made in the development of carbon-supported Pt-based catalysts, with special emphasis being given to how activity and stability enhancements are related to Pt-C interactions in various carbon supports, including porous carbon, heteroatom doped carbon, carbon-based binary support, and their corresponding electrocatalytic applications. Finally, the current challenges and future prospects in the development of carbon-supported Pt-based catalysts are discussed.
Collapse
Affiliation(s)
- Yu-Xuan Xiao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082 China
| | - Jie Ying
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082 China
| | - Hong-Wei Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082 China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070 China
| |
Collapse
|
6
|
Immobilization of Glucose Oxidase on Glutathione Capped CdTe Quantum Dots for Bioenergy Generation. Catalysts 2022. [DOI: 10.3390/catal12121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An efficient immobilization of Glucose oxidase (GOx) on an appropriate substrate is one of the main challenges of developing fuel cells that allow energy to be obtained from renewable substrates such as carbohydrates in physiological environments. The research importance of biofuel cells relies on their experimental robustness and high compatibility with biological organisms such as tissues or the bloodstream with the aim of obtaining electrical energy even from living systems. In this work, we report the use of 5,10,15,20 tetrakis (1-methyl-4-pyridinium) porphyrin and glutathione capped CdTe Quantum dots (GSH-CdTeQD) as a support matrix for the immobilization of GOx on carbon surfaces. Fluorescent GSH-CdTeQD particles were synthesized and their characterization by UV-Vis spectrophotometry showed a particle size between 5–7 nm, which was confirmed by DLS and TEM measurements. Graphite and Toray paper electrodes were modified by a drop coating of porphyrin, GSH-CdTeQD and GOx, and their electrochemical activity toward glucose oxidation was evaluated by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Additionally, GOx modified electrode activity was explored by scanning electrochemical microscopy, finding that near to 70% of the surface was covered with active enzyme. The modified electrodes showed a glucose sensitivity of 0.58 ± 0.01 μA/mM and an apparent Michaelis constant of 7.8 mM. The addition of BSA blocking protein maintained the current response of common interferent molecules such as ascorbic acid (AA) with less than a 5% of interference percentage. Finally, the complex electrodes were employed as anodes in a microfluidic biofuel cell (μBFC) in order to evaluate the performance in energy production. The enzymatic anodes used in the μBFC allowed us to obtain a current density of 7.53 mAcm−2 at the maximum power density of 2.30 mWcm−2; an open circuit potential of 0.57 V was observed in the biofuel cell. The results obtained suggest that the support matrix porphyrin and GSH-CdTeQD is appropriate to immobilize GOx while preserving the enzyme’s catalytic activity. The reported electrode arrangement is a viable option for bioenergy production and/or glucose quantification.
Collapse
|
7
|
Li S, Wang H, Sun G, Zhao F, Yang H, Li G, Kong X, Liu Q. Enhanced photoelectrocatalytic performance of porphyrin-modified nickel cobaltite for methanol oxidation under visible light. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Yang H, Liu X, Qin K, Bu Q, Liu Q. Enhancement Strategy of Photoelectrocatalytic Activity of Cobalt-Copper Layer Double Hydroxide toward Methanol Oxidation: Cerium Doping and Modification with Porphyrin. Inorg Chem 2022; 61:7414-7425. [PMID: 35512284 DOI: 10.1021/acs.inorgchem.2c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Designing durable, high-active, and low-cost noble-metal-free photoelectrocatalysts for methanol electrooxidation is highly demanded but remains a challenge. Herein, the photoelectrocatalytic activity of cobalt-copper layer double hydroxide (CoCu-LDH) for methanol oxidation reaction (MOR) in the alkaline media under light was remarkably enhanced by cerium (Ce) doping and further by 5,10,15,20-tetrakis(4-carboxylphenyl)porphyrin (TCPP) modification. TCPP/Ce-CoCu-LDH exhibits a remarkable mass activity of 1788.2 mA mg-1 in 1 mol L-1 KOH with 1 mol L-1 methanol under light, which is 2.3 and 1.8 times higher than that of CoCu-LDH (782.2 mA mg-1) and Ce-CoCu-LDH (987.4 mA mg-1). The UV-vis diffuse reflectance spectra and photoluminescence emission spectra reveal that TCPP/Ce-CoCu-LDH can effectively utilize the visible light and inhibit the electron-hole pairs' recombination because of the introduction of porphyrin. Furthermore, more active sites and the greater electrical conductivity of TCPP/Ce-CoCu-LDH also contributed to the high photoelectrocatalytic activity. Thus, TCPP/Ce-CoCu-LDH can be used as a low-cost alternative for Pt-based catalyst toward MOR.
Collapse
Affiliation(s)
- Hui Yang
- College of Chemical and Biological Engineering, State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Xiangwei Liu
- College of Chemical and Biological Engineering, State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Kang Qin
- College of Chemical and Biological Engineering, State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Qijing Bu
- College of Chemical and Biological Engineering, State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Qingyun Liu
- College of Chemical and Biological Engineering, State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, PR China
| |
Collapse
|
9
|
Abdelhalim AO, Semenov KN, Nerukh DA, Murin IV, Maistrenko DN, Molchanov OE, Sharoyko VV. Functionalisation of graphene as a tool for developing nanomaterials with predefined properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Yang P, Zhou Z, Zheng T, Gu C, Gong X, Zhang Y, Xie Y, Yang N, Fei J. A novel strategy to synthesize Pt/CNTs nanocatalyst with highly improved activity for methanol electrooxidation. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Kochrekar S, Kalekar A, Mehta S, Damlin P, Salomäki M, Granroth S, Meltola N, Joshi K, Kvarnström C. Copolymers of bipyridinium and metal (Zn & Ni) porphyrin derivatives; theoretical insights and electrochemical activity towards CO 2. RSC Adv 2021; 11:19844-19855. [PMID: 35479229 PMCID: PMC9033822 DOI: 10.1039/d1ra01945g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/26/2021] [Indexed: 12/03/2022] Open
Abstract
This study reports the electropolymerization of novel keto functionalized octaethyl metal porphyrins (Zn2+ and Ni2+) in the presence of 4,4′-bipyridine (4,4′-bpy) as a bridging nucleophile. The polymer films were characterized by electrochemical, spectroscopic (UV-Vis, XPS, FT-IR and Raman spectroscopy) and imaging (AFM and SEM) techniques. The absorption and electronic spectra confirm the presence of both porphyrin and 4,4′-bipyridine units in the film. The surface morphology reveals homogeneous film deposition with average roughness values of approx. 8 nm. The theoretical studies performed offered insights into the interplay of different metal centres (Zn2+ and Ni2+) and the keto functionality of the porphyrin unit in the formation of copolymer films. The electrochemical interaction of polymer films with CO2 suggests a reversible trap and release of CO2 with low energy barriers for both the polymers. Electropolymerization of keto functionalized porphyrins and 4,4′-bipyridine.![]()
Collapse
Affiliation(s)
- Sachin Kochrekar
- Turku University Graduate School (UTUGS)
- Doctoral Programme in Physical and Chemical Sciences
- FI-20014 Turku
- Finland
- Turku University Centre for Materials and Surfaces (MatSurf)
| | - Ajit Kalekar
- Turku University Centre for Materials and Surfaces (MatSurf)
- Department of Chemistry
- University of Turku
- FI-20014 Turku
- Finland
| | - Shweta Mehta
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Pia Damlin
- Turku University Centre for Materials and Surfaces (MatSurf)
- Department of Chemistry
- University of Turku
- FI-20014 Turku
- Finland
| | - Mikko Salomäki
- Turku University Centre for Materials and Surfaces (MatSurf)
- Department of Chemistry
- University of Turku
- FI-20014 Turku
- Finland
| | - Sari Granroth
- Laboratory of Materials Science
- University of Turku
- Turku
- Finland
| | - Niko Meltola
- ArcDia International Oy Ltd
- FI-20521-Turku
- Finland
| | - Kavita Joshi
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Carita Kvarnström
- Turku University Centre for Materials and Surfaces (MatSurf)
- Department of Chemistry
- University of Turku
- FI-20014 Turku
- Finland
| |
Collapse
|
12
|
Enhanced photoelectrocatalytic activity of cobalt sulfide modified with porphyrin as a noble-metal-free photoelectroncatalyst towards methanol oxidation under visible-light. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Mota HP, Quadrado RF, Burgo TA, Iglesias BA, Fajardo AR. Polysaccharide/Fe(III)-porphyrin hybrid film as catalyst for oxidative decolorization of toxic azo dyes: An approach for wastewater treatment. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
14
|
Wang H, Zhang K, Qiu J, Wu J, Shao J, Wang H, Zhang Y, Han J, Zhang Y, Yan L. Ternary PtFeCo alloys on graphene with high electrocatalytic activities for methanol oxidation. NANOSCALE 2020; 12:9824-9832. [PMID: 32338669 DOI: 10.1039/d0nr00757a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ternary PtFeCo alloys as alternatives to conventional Pt electrocatalysts are highly important in the field of the methanol oxidation reaction. In this study, we demonstrate a one-pot two-step reduction method for the synthesis of graphene supported PtFeCo alloy nanocomposites as an integrated binder-free catalyst. The synergistic effect of alloying with Fe and Co as well as graphene decorating contributes to an increase in the utilization of the noble metal, namely, reducing the amount of Pt in the nanocomposites to 7%. After tailoring the elemental composition of the alloys, Pt52Fe29Co19@G-7% exhibits a mass activity/specific activity of 1758.2 mA mg-1Pt/3.42 mA cm-2 that is 3.13/3.45 times that of commercial Pt/C in an acidic medium. Impressively, it showed a superior mass current density of 9356.1 mA mg-1Pt at 60 °C which is close to the operating temperature of direct methanol fuel cells. Moreover, the as-obtained Pt52Fe29Co19@G-7% also exhibited excellent CO tolerance and reliable stability compared to commercial Pt/C. The structural characterization further verifies that the surface strain and electronic effect play a critical role in determining the electrocatalytic properties of PtFeCo@G nanocomposites for the methanol oxidation reaction.
Collapse
Affiliation(s)
- Hongfei Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Synthesis, characterization, and design of a photocatalyst based on BiOBr nanoplates and tin porphyrin with enhanced visible light photocatalytic activity. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-019-03943-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Zhong JP, Hou C, Li L, Waqas M, Fan YJ, Shen XC, Chen W, Wan LY, Liao HG, Sun SG. A novel strategy for synthesizing Fe, N, and S tridoped graphene-supported Pt nanodendrites toward highly efficient methanol oxidation. J Catal 2020. [DOI: 10.1016/j.jcat.2019.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Chen W, Lei Z, Zeng T, Wang L, Cheng N, Tan Y, Mu S. Structurally ordered PtSn intermetallic nanoparticles supported on ATO for efficient methanol oxidation reaction. NANOSCALE 2019; 11:19895-19902. [PMID: 31599300 DOI: 10.1039/c9nr07245d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of cost-effective methanol oxidation reaction (MOR) catalysts with a high activity and stability is highly desirable for direct methanol fuel cells. In this study, the structurally ordered PtSn intermetallic nanoparticles supported on Sb-doped SnO2 (ATO) have been successfully synthesized in ethylene glycol (EG) solution at 200 °C. Pt NPs were firstly formed on ATO, followed by the transformation from Pt into hexagonal PtSn on the surface of ATO. The obtained structurally ordered PtSn intermetallic NPs supported on ATO demonstrate significantly enhanced MOR activity and durability in comparison with commercial Pt/C. Our PtSn intermetallic NPs supported on ATO show a MOR activity 4.1 times higher than that of commercial Pt/C catalysts. Accelerated durability tests indicate that the commercial Pt/C catalysts lose about 50% of their initial current density after 500 cycles while the Pt/ATO-200-3 h catalyst loses only about 15% of its initial current density. Our PtSn intermetallic NPs supported on ATO are also found to have higher CO tolerance than commercial Pt/C. This work demonstrates an important strategy to rationally design high-performance structurally ordered Pt-based intermetallic NP catalysts for fuel cells and other applications.
Collapse
Affiliation(s)
- Wei Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China. and Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou, 350108, China
| | - Zhao Lei
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China. and Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou, 350108, China
| | - Tang Zeng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China. and Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou, 350108, China
| | - Liang Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China. and Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou, 350108, China
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China. and Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou, 350108, China
| | - Yangyang Tan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China. and Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou, 350108, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
18
|
Nguyen TL, Cao VH, Yen Pham TH, Giang Le T. Fabrication of Nano Flower‐shaped Platinum on Glassy Carbon Electrode as a Sensitive Sensor for Lead Electrochemical Analysis. ELECTROANAL 2019. [DOI: 10.1002/elan.201900021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Thi Lieu Nguyen
- Graduate University of Science and TechnologyVietnam Academy of Science and Technology 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
- Department of ChemistryQuy Nhon University 170 An Duong Vuong Nguyen Van Cu Quy Nhon, Binh Dinh Vietnam
| | - Van Hoang Cao
- Department of ChemistryQuy Nhon University 170 An Duong Vuong Nguyen Van Cu Quy Nhon, Binh Dinh Vietnam
| | - Thi Hai Yen Pham
- Institute of ChemistryVietnam Academy of Science and Technology 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Truong Giang Le
- Graduate University of Science and TechnologyVietnam Academy of Science and Technology 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
- Institute of ChemistryVietnam Academy of Science and Technology 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| |
Collapse
|
19
|
Bao Y, Wang F, Gu X, Feng L. Core-shell structured PtRu nanoparticles@FeP promoter with an efficient nanointerface for alcohol fuel electrooxidation. NANOSCALE 2019; 11:18866-18873. [PMID: 31596300 DOI: 10.1039/c9nr07158j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, a bottleneck was overcome for direct alcohol fuel cells using state-of-the-art PtRu catalysts for alcohol fuel oxidation. Herein, a core-shell structured PtRu catalyst system based on the emerging promoter FeP was developed that showed excellent catalytic performance for the oxidation of alcohol fuels. The surface spectrometric analysis and morphology observation confirmed the formation of a nanointerface of the PtRu shell and FeP core hybrid catalyst (PtRu@FeP), and efficient ligand effects and electronic effects were found to result from the noble metal active sites and adjacent promoter in the core-shell structure. The facile formation of oxygen-containing species and the strong electronic effects could activate the Pt active sites, leading to high catalytic performance. High anti-CO poisoning ability was found for this catalyst system when compared with the case of the benchmark commercial PtRu/C catalyst (110 mV less and 60 mV less as evaluated by the peak and onset potentials for CO oxidation, respectively). The PtRu@FeP catalysts also exhibited much higher catalytic activity and stability when compared with commercial and home-made PtRu/C catalysts; specifically, the peak current density of the PtRu@FeP 1 : 1 catalyst was about 2 and 3 times higher than those of the commercial PtRu/C catalyst and home-made PtRu/C for the oxidation of the alcohol fuels methanol and ethanol; moreover, high catalytic efficiency, improved by 2 times, was found, as expressed by the specific activity. Excellent catalytic stability as evaluated by 1000 cycles of cyclic voltammetry measurements was also demonstrated for the PtRu@FeP catalysts. The high catalytic performance could be attributed to the intimate nanointerface contact of the core-shell structured PtRu shell over the FeP core via a bi-functional catalytic mechanism and electronic effects based on the ligand effect in this catalyst system. The current study is a significant step to increase the PtRu catalytic performance via nanointerface construction by a core-shell structure on a novel promoter for direct alcohol fuel cells.
Collapse
Affiliation(s)
- Yufei Bao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Fulong Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Xiaocong Gu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| |
Collapse
|
20
|
Platinum Nanoflower-Modified Electrode as a Sensitive Sensor for Simultaneous Detection of Lead and Cadmium at Trace Levels. J CHEM-NY 2019. [DOI: 10.1155/2019/6235479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We introduce the fabrication and electrochemical application of platinum nanoflower-modified glassy carbon electrode (PtNFs/GCE) for the trace level determination of lead and cadmium using differential pulse anodic stripping voltammetry (DPASV). The modified electrodes have been characterized by EDX, XRD, SEM, and AFM techniques to confirm chemical and physical properties. The effect of potential electrodeposition on the properties of the electrode was investigated. At −0.2 V of potential, platinum developed with a nanoflower shape and dispersed densely all over the glassy carbon surface. In this condition, the highest of lead and cadmium electrochemical signals was clearly observed. The sensor showed wide linearity in the concentration range of 1–100 μg·L−1 with detection limits of 0.408 μg·L−1 and 0.453 μg·L−1 for lead and cadmium ions, respectively. The produced electrodes have good reproducibility with relative standard deviations of 4.65% for lead and 4.36% for cadmium ions. The results demonstrate that this simple, stable, and sensitive sensor is suitable for the simultaneous electrochemical determination of Pb2+ and Cd2+ at trace levels.
Collapse
|
21
|
Modak A, Bhanja P, Bhaumik A. Pt Nanoparticles Supported over Porous Porphyrin Nanospheres for Chemoselective Hydrogenation Reactions. ChemCatChem 2019. [DOI: 10.1002/cctc.201802108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arindam Modak
- School of Materials ScienceIndian Association for the Cultivation of Science 2A & B, Raja S.C. Mullick Road Jadavpur, Kolkata- 700032 India
- Technical Research CentreS. N. Bose National Centre for Basic Sciences Block-JD, Sector-III Salt Lake, Kolkata- 700106 India
| | - Piyali Bhanja
- School of Materials ScienceIndian Association for the Cultivation of Science 2A & B, Raja S.C. Mullick Road Jadavpur, Kolkata- 700032 India
| | - Asim Bhaumik
- School of Materials ScienceIndian Association for the Cultivation of Science 2A & B, Raja S.C. Mullick Road Jadavpur, Kolkata- 700032 India
| |
Collapse
|
22
|
Devereux SJ, Massaro M, Barker A, Hinds DT, Hifni B, Simpson JC, Quinn SJ. Spectroscopic study of the loading of cationic porphyrins by carbon nanohorns as high capacity carriers of photoactive molecules to cells. J Mater Chem B 2019. [DOI: 10.1039/c9tb00217k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spherical carbon nanohorns have great potential as drug delivery agents. Here a detailed study of the loading of porphyrin molecules is reported and the influence on their stability described. An optimally loaded sample is shown to cause photoactivated cell death.
Collapse
Affiliation(s)
| | - Marina Massaro
- School of Chemistry
- University College Dublin
- Dublin 4
- Ireland
| | - Andrew Barker
- School of Chemistry
- University College Dublin
- Dublin 4
- Ireland
| | - David T. Hinds
- School of Chemistry
- University College Dublin
- Dublin 4
- Ireland
| | - Badriah Hifni
- School of Chemistry
- University College Dublin
- Dublin 4
- Ireland
- School of Biology & Environmental Science, University College Dublin, Belfield
| | - Jeremy C. Simpson
- School of Biology & Environmental Science, University College Dublin, Belfield
- Dublin 4
- Ireland
| | - Susan J. Quinn
- School of Chemistry
- University College Dublin
- Dublin 4
- Ireland
| |
Collapse
|
23
|
Roy S, Payra S, Challagulla S, Arora R, Roy S, Chakraborty C. Enhanced Photoinduced Electrocatalytic Oxidation of Methanol Using Pt Nanoparticle-Decorated TiO 2-Polyaniline Ternary Nanofibers. ACS OMEGA 2018; 3:17778-17788. [PMID: 31458374 PMCID: PMC6643921 DOI: 10.1021/acsomega.8b02610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/10/2018] [Indexed: 06/10/2023]
Abstract
Herein, perylene-3,4,9,10-tetracarboxylic acid-doped polyaniline (PTP) nanofibers with/without photoreactive anatase TiO2 (TiO2-PTP and PTP, respectively) have been successively synthesized and subsequently decorated by Pt nanoparticles (Pt NPs) to prepare Pt-PTP and Pt-TiO2-PTP composites. High-resolution transmission electron microscopy confirms the presence of ∼3 nm spherical-shaped Pt NPs on both the composites along with TiO2 on Pt-TiO2-PTP. Pt loading on the composites is deliberately kept similar to compare the methanol electro-oxidation in the two composites. The Pt nanocomposites along with the precursor polyanilines are characterized by optical characterization, X-ray diffraction study, X-ray fluorescence spectroscopy, and Raman spectroscopy. The ternary composite-modified (Pt-TiO2-PTP) electrode demonstrates high electrocatalytic performance for methanol oxidation reaction in acid medium than Pt-PTP and Pt-TiO2. The higher electrochemical surface area (1.7 times), high forward/backward current ratio, and the higher CO tolerance ability for Pt-TiO2-PTP make it a superior catalyst for methanol oxidation reaction in the electrochemical process than Pt-PTP. Moreover, the catalytic activity of Pt-TiO2-PTP is further enhanced significantly with light irradiation. The cooperative effects of photo- and electrocatalysis on methanol oxidation reaction in Pt-TiO2-PTP enhance the methanol oxidation catalytic activity approximately 1.3 times higher in light illumination than in dark. Therefore, the present work will be proficient to get a light-assisted sustainable approach for developing the methanol oxidation reaction activity of Pt NP-containing catalysts in direct methanol fuel cells.
Collapse
|
24
|
Yu X, Luo F, Yang Z, Zhang Q, Ling Y, Cai W, Cheng H. Insight Observation of Simultaneously Enhanced CO Tolerance and Stability of Pt Electrocatalysts Decorated with Oxygen Vacancy Rich Cerium Oxide. ChemElectroChem 2018. [DOI: 10.1002/celc.201800880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xinxin Yu
- Sustainable Energy Laboratory; Faculty of Materials Science and Chemistry; China University of Geosciences Wuhan; China
| | - Fang Luo
- Sustainable Energy Laboratory; Faculty of Materials Science and Chemistry; China University of Geosciences Wuhan; China
| | - Zehui Yang
- Sustainable Energy Laboratory; Faculty of Materials Science and Chemistry; China University of Geosciences Wuhan; China
| | - Quan Zhang
- Sustainable Energy Laboratory; Faculty of Materials Science and Chemistry; China University of Geosciences Wuhan; China
| | - Ying Ling
- Sustainable Energy Laboratory; Faculty of Materials Science and Chemistry; China University of Geosciences Wuhan; China
| | - Weiwei Cai
- Sustainable Energy Laboratory; Faculty of Materials Science and Chemistry; China University of Geosciences Wuhan; China
| | - Hansong Cheng
- Sustainable Energy Laboratory; Faculty of Materials Science and Chemistry; China University of Geosciences Wuhan; China
| |
Collapse
|
25
|
Exploring the role of cobalt in promoting the electroactivity of amorphous Ni-B nanoparticles toward methanol oxidation. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Bian B, Liu Q, Yu S. Enhanced peroxidase-like activity of porphyrin functionalized ZnFe2O4 hollow nanospheres for rapid detection of H2O2 and glucose. NEW J CHEM 2018. [DOI: 10.1039/c8nj00720a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a simple one-pot solvothermal method, binary metal oxide, magnetic and hollow ZnFe2O4 nanospheres functionalized with 5,10,15,20-tetrakis(4-carboxylpheyl)-porphyrin (Por–ZnFe2O4 HSs) were prepared and subsequently applied as a substitute for natural peroxidase.
Collapse
Affiliation(s)
- Bing Bian
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
- College of Chemical and Environmental Engineering
| | - Qingyun Liu
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266510
- China
| | - Shitao Yu
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| |
Collapse
|
27
|
Hoseini SJ, Bahrami M, Maddahfar M, Hashemi Fath R, Roushani M. Polymerization of graphene oxide nanosheet by using of aminoclay: Electrocatalytic activity of its platinum nanohybrids. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- S. Jafar Hoseini
- Department of Chemistry, Faculty of Sciences; Yasouj University; Yasouj 7591874831 Iran
| | - Mehrangiz Bahrami
- Department of Chemistry, Faculty of Sciences; Yasouj University; Yasouj 7591874831 Iran
| | - Mahnaz Maddahfar
- Department of Chemistry, Faculty of Sciences; Yasouj University; Yasouj 7591874831 Iran
| | - Roghayeh Hashemi Fath
- Department of Chemistry, Faculty of Sciences; Yasouj University; Yasouj 7591874831 Iran
| | - Mahmoud Roushani
- Department of Chemistry, Faculty of Sciences; Ilam University; Ilam 69315516 Iran
| |
Collapse
|
28
|
Fu W, Zhang Z, Zhuang P, Shen J, Ye M. One-pot hydrothermal synthesis of magnetically recoverable palladium/reduced graphene oxide nanocomposites and its catalytic applications in cross-coupling reactions. J Colloid Interface Sci 2017; 497:83-92. [DOI: 10.1016/j.jcis.2017.02.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/24/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
|
29
|
Yin W, Dong X, Yu J, Pan J, Yao Z, Gu Z, Zhao Y. MoS 2-Nanosheet-Assisted Coordination of Metal Ions with Porphyrin for Rapid Detection and Removal of Cadmium Ions in Aqueous Media. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21362-21370. [PMID: 28570052 DOI: 10.1021/acsami.7b04185] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Molybdenum disulfide (MoS2) is a two-dimensional (2D) graphene-like material that is gaining great attention because of its potential application in various fields. Here, we reported a self-assembled nanocomposite consisted of MoS2 nanosheets and 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrintetra(p-toluenesulfonate) (TMPyP), named MoS2@TMPyP. This nanocomposite can be used as a sensing probe for low cost, rapid, selective detection of cadmium (Cd2+) ions. It is found that a new Soret band at 442 nm in UV-vis absorption spectra represented the coordination of Cd2+ ions into TMPyP of the MoS2@TMPyP. The coordination rates between TMPyP and Cd2+ ions is greatly accelerated from 72 h to 20 min with the assistance of MoS2, which is 200 times faster than in the absence of MoS2. The limit of detection (LOD) of the Cd2+ is as low as 7.2 × 10-8 mol/L. The binding behavior between the cationic TMPyP and MoS2 nanosheets was corroborated by molecular dynamics simulation and various control experiments. The results demonstrated that electrostatic interaction was the main force for driving TMPyP enriching around the MoS2 surface, resulting in an accelerated complexation of Cd2+ and TMPyP. Moreover, MoS2@TMPyP nanocomposite can also be used for removing of Cd2+ in water. The removal efficiency (RF) of the MoS2@TMPyP can reach to 91% for high concentrations of Cd2+. This work provides a new insight into detection and removal of Cd2+ ions in water.
Collapse
Affiliation(s)
- Wenyan Yin
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing, 100049, China
| | - Xinghua Dong
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Jie Yu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing, 100049, China
| | - Jun Pan
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing, 100049, China
| | - Zhiyi Yao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing, 100049, China
| | - Zhanjun Gu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing, 100049, China
| | - Yuliang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing, 100049, China
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China , Beijing, 100190, China
| |
Collapse
|
30
|
Zvyagina AI, Shiryaev AA, Baranchikov AE, Chernyshev VV, Enakieva YY, Raitman OA, Ezhov AA, Meshkov IN, Grishanov DA, Ivanova OS, Gorbunova YG, Arslanov VV, Kalinina MA. Layer-by-layer assembly of porphyrin-based metal–organic frameworks on solids decorated with graphene oxide. NEW J CHEM 2017. [DOI: 10.1039/c6nj03202h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Planar MOFs grow on graphene oxide templates.
Collapse
|
31
|
Sun J, Ling Y, Zhang Q, Yu X, Yang Z. Simultaneous enhancements in stability and CO tolerance of Pt electrocatalyst by double poly(vinyl pyrrolidone) coatings. RSC Adv 2017. [DOI: 10.1039/c7ra04691j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CO poisoning and low durability of the anodic electrocatalyst is one of the obstacles restricting the practical application of direct methanol fuel cells (DMFCs).
Collapse
Affiliation(s)
- Jiuxiao Sun
- College of Materials Science and Engineering
- Wuhan Textile University
- Wuhan
- China
| | - Ying Ling
- Sustainable Energy Laboratory
- Faculty of Materials Science and Chemistry
- China University of Geosciences Wuhan
- Wuhan
- China
| | - Quan Zhang
- Sustainable Energy Laboratory
- Faculty of Materials Science and Chemistry
- China University of Geosciences Wuhan
- Wuhan
- China
| | - Xinxin Yu
- Sustainable Energy Laboratory
- Faculty of Materials Science and Chemistry
- China University of Geosciences Wuhan
- Wuhan
- China
| | - Zehui Yang
- Sustainable Energy Laboratory
- Faculty of Materials Science and Chemistry
- China University of Geosciences Wuhan
- Wuhan
- China
| |
Collapse
|
32
|
Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells. Sci Rep 2016; 6:21530. [PMID: 26876468 PMCID: PMC4753497 DOI: 10.1038/srep21530] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/27/2016] [Indexed: 11/08/2022] Open
Abstract
In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.
Collapse
|
33
|
Zhao L, Wang ZB, Li JL, Zhang JJ, Sui XL, Zhang LM. Hybrid of carbon-supported Pt nanoparticles and three dimensional graphene aerogel as high stable electrocatalyst for methanol electrooxidation. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.072] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Karuppiah C, Sakthinathan S, Chen SM, Manibalan K, Chen SM, Huang ST. A non-covalent functionalization of copper tetraphenylporphyrin/chemically reduced graphene oxide nanocomposite for the selective determination of dopamine. Appl Organomet Chem 2015. [DOI: 10.1002/aoc.3397] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chelladurai Karuppiah
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; No. 1, Section 3, Chung-Hsiao East Road Taipei 106 Taiwan (ROC)
| | - Subramanian Sakthinathan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; No. 1, Section 3, Chung-Hsiao East Road Taipei 106 Taiwan (ROC)
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; No. 1, Section 3, Chung-Hsiao East Road Taipei 106 Taiwan (ROC)
| | - Kesavan Manibalan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; No. 1, Section 3, Chung-Hsiao East Road Taipei 106 Taiwan (ROC)
| | - Sin-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; No. 1, Section 3, Chung-Hsiao East Road Taipei 106 Taiwan (ROC)
| | - Sheng-Tung Huang
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; No. 1, Section 3, Chung-Hsiao East Road Taipei 106 Taiwan (ROC)
| |
Collapse
|
35
|
Zhao L, Wang ZB, Li JL, Zhang JJ, Sui XL, Zhang LM. One-pot synthesis of a three-dimensional graphene aerogel supported Pt catalyst for methanol electrooxidation. RSC Adv 2015. [DOI: 10.1039/c5ra20503d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A Pt/graphene aerogel hybrid catalyst synthesized via a facile one-pot solvothermal method exhibits 2.86 times higher activity for methanol electrooxidation than that of Pt/graphene and the stability is improved by 10% as compared with Pt/graphene.
Collapse
Affiliation(s)
- Lei Zhao
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Zhen-Bo Wang
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Jia-Long Li
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Jing-Jia Zhang
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Xu-Lei Sui
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Li-Mei Zhang
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|
36
|
Zhou LN, Zhang XT, Shen WJ, Sun SG, Li YJ. Monolayer of close-packed Pt nanocrystals on a reduced graphene oxide (RGO) nanosheet and its enhanced catalytic performance towards methanol electrooxidation. RSC Adv 2015. [DOI: 10.1039/c5ra03007b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A close-packed monolayer composed of (111)-orientated Pt nanocrystals was fabricated on reduced graphene oxide, exhibiting excellent electrocatalytic activity and stability towards methanol oxidation, ~3 times better mass activity than the commercial Pt/C.
Collapse
Affiliation(s)
- Lin-Nan Zhou
- State Key Lab of Chemo/Biosensing and Chemometrics
- School of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Xiao-Ting Zhang
- State Key Lab of Chemo/Biosensing and Chemometrics
- School of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Wen-Jin Shen
- State Key Lab of Chemo/Biosensing and Chemometrics
- School of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Shi-Gang Sun
- State Key Lab for Physical Chemistry of Solid Surfaces
- Department of Chemistry
- Xiamen University
- Xiamen 361005
- China
| | - Yong-Jun Li
- State Key Lab of Chemo/Biosensing and Chemometrics
- School of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
37
|
Wen S, Liang M, Zou R, Wang Z, Yue D, Liu L. Electrospinning of palladium/silica nanofibers for catalyst applications. RSC Adv 2015. [DOI: 10.1039/c5ra02660a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new inorganic supported catalyst of silica (SiO2)-supported palladium (Pd) nanofibers was successfully fabricated by the electrospinning followed by the calcination at high temperature and the reduction in H2 atmosphere.
Collapse
Affiliation(s)
- Shipeng Wen
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Engineering Research Center of Advanced Elastomers
| | - Meili Liang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Engineering Research Center of Advanced Elastomers
| | - Rui Zou
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhoujun Wang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Dongmei Yue
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Li Liu
- Beijing Engineering Research Center of Advanced Elastomers
- Beijing University of Chemical Technology
- Beijing 100029
- China
- State Key Laboratory of Chemical Resource Engineering
| |
Collapse
|