1
|
Li H, Yang X. Effect of Surface Morphologies on the In Vitro and In Vivo Properties of Biomedical Metallic Materials. ACS Biomater Sci Eng 2024; 10:6017-6028. [PMID: 39269725 DOI: 10.1021/acsbiomaterials.4c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Metallic biomaterials, including traditional bioinert materials (such as stainless steel, cobalt-chromium alloys, pure titanium, and titanium alloys), novel biodegradable metals (such as pure magnesium and magnesium alloys, pure zinc and zinc alloys, and pure iron and iron alloys), and biomedical metallic glasses, have been widely used and studied as various biomedical implants and devices. Many scientists and researchers have investigated their superior biomechanical properties, corrosion behavior, and biocompatibility. However, their surface characteristics are of extreme importance due to continuing interactions between the surface/interface of an implanted metallic biomaterial and the surrounding physiological environment. Surface morphologies on these metallic biomaterials can modulate their in vitro and in vivo biological responses. In this review, we have summarized and investigated the effect of various surface morphologies on the corrosion behavior, cellular response, antibacterial activity, and osteogenesis of biomedical metallic materials. In addition, future research directions and challenges of surface morphologies on biomedical metallic materials have been elaborated. This review can lay a theoretical and practical foundation for further research and development on biomedical metallic materials.
Collapse
Affiliation(s)
- Huafang Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xuan Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
2
|
Cherian AM, Joseph J, Nair MB, Nair SV, Vijayakumar M, Menon D. Coupled benefits of nanotopography and titania surface chemistry in fostering endothelialization and reducing in-stent restenosis in coronary stents. BIOMATERIALS ADVANCES 2022; 142:213149. [PMID: 36270158 DOI: 10.1016/j.bioadv.2022.213149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/03/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Recent advances in coronary stents have all been distinctively focused towards directing re-endothelialization with minimal in-stent restenosis, potentially via alterations in surface topographical cues, for augmenting the efficacy of vascular implants. This perspective was proven by our group utilizing a simple and easily scalable nanosurface modification strategy on metallic stents devoid of any drugs or polymers. In the present work, we explore the impact of surface characteristics in modulating this cell response in-vitro and in-vivo, using titania coated cobalt-chromium (CC) stents, with and without nanotopography, in comparison to commercial controls. Interestingly, titania nanotopography facilitated a preferential cell response in-vitro as against the titania coated and bare CC surfaces, which can be attributed to surface topography, hydrophilicity, and roughness. This in turn altered the cellular adhesion, proliferation and focal contact formations of endothelial and smooth muscle cells. We also demonstrate that titania nanotexturing plays a pivotal role in fostering rapid re-endothelialization with minimal neointimal hyperplasia, leading to excellent in-vivo patency of CC stents post 8 weeks implantation in rabbit iliac arteries, in comparison to bare CC, nano-less titania coated CC, and commercial drug-eluting stents (CC DES), without administering antiplatelet agents. This exciting result for the drug and polymer-free titania nanotextured stents, in the absence of platelet therapy, reveals the possibility of proposing an alternative to clinical DES for coronary stenting.
Collapse
Affiliation(s)
- Aleena Mary Cherian
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O, Cochin 682041, Kerala, India
| | - John Joseph
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O, Cochin 682041, Kerala, India
| | - Manitha B Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O, Cochin 682041, Kerala, India
| | - Shantikumar V Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O, Cochin 682041, Kerala, India
| | - M Vijayakumar
- Department of cardiology, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O, Cochin 682041, Kerala, India.
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O, Cochin 682041, Kerala, India.
| |
Collapse
|
3
|
Krishnan AG, Joseph J, C. R. R, Nair SV, Nair M, Menon D. Silk-based bilayered small diameter woven vascular conduits for improved mechanical and cellular characteristics. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1999954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Aarya G. Krishnan
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - John Joseph
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Reshmi C. R.
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Shantikumar V. Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Manitha Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
4
|
Cherian AM, Nair SV, Maniyal V, Menon D. Surface engineering at the nanoscale: A way forward to improve coronary stent efficacy. APL Bioeng 2021; 5:021508. [PMID: 34104846 PMCID: PMC8172248 DOI: 10.1063/5.0037298] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Coronary in-stent restenosis and late stent thrombosis are the two major inadequacies of vascular stents that limit its long-term efficacy. Although restenosis has been successfully inhibited through the use of the current clinical drug-eluting stent which releases antiproliferative drugs, problems of late-stent thrombosis remain a concern due to polymer hypersensitivity and delayed re-endothelialization. Thus, the field of coronary stenting demands devices having enhanced compatibility and effectiveness to endothelial cells. Nanotechnology allows for efficient modulation of surface roughness, chemistry, feature size, and drug/biologics loading, to attain the desired biological response. Hence, surface topographical modification at the nanoscale is a plausible strategy to improve stent performance by utilizing novel design schemes that incorporate nanofeatures via the use of nanostructures, particles, or fibers, with or without the use of drugs/biologics. The main intent of this review is to deliberate on the impact of nanotechnology approaches for stent design and development and the recent advancements in this field on vascular stent performance.
Collapse
Affiliation(s)
- Aleena Mary Cherian
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| | - Shantikumar V. Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| | - Vijayakumar Maniyal
- Department of Cardiology, Amrita Institute of Medical Science
and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O. Cochin
682041, Kerala, India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| |
Collapse
|
5
|
Meng X, Cheng Y, Wang P, Chen K, Chen Z, Liu X, Fu X, Wang K, Liu K, Liu Z, Duan X. Enhanced Hemocompatibility of a Direct Chemical Vapor Deposition-Derived Graphene Film. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4835-4843. [PMID: 33474941 DOI: 10.1021/acsami.0c19790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A wide range of biomedical devices are being used to treat cardiovascular diseases, and thus they routinely come into contact with blood. Insufficient hemocompatibility has been found to impair the functionality and safety of these devices through the activation of blood coagulation and the immune system. Numerous attempts have been made to develop surface modification approaches of the cardiovascular devices to improve their hemocompatibility. However, there are still no ideal "blood-friendly" coating materials, which possess the desired hemocompatibility, tissue compatibility, and mechanical properties. As a novel multifunctional material, graphene has been proposed for a wide range of biomedical applications. The chemical inertness, atomic smoothness, and high durability make graphene an ideal candidate as a surface coating material for implantable devices. Here, we evaluated the hemocompatibility of a graphene film prepared on quartz glasses (Gra-glasses) from a direct chemical vapor deposition process. We found that the graphene coating, which is free of transfer-mediating polymer contamination, significantly suppressed platelet adhesion and activation, prolonged coagulation time, and reduced ex vivo thrombosis formation. We attribute the excellent antithrombogenic properties of the Gra-glasses to the low surface roughness, low surface energy (especially the low polar component of the surface energy), and the negative surface charge of the graphene film. Given these excellent hemocompatible properties, along with its chemical inertness, high durability, and molecular impermeability, a graphene film holds great promise as an antithrombogenic coating for next-generation cardiovascular devices.
Collapse
Affiliation(s)
- Xuejuan Meng
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yi Cheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Puxin Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ke Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhaolong Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaojun Liu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xuefeng Fu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Kun Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kaihui Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Zhongfan Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaojie Duan
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Chichareon P, Katagiri Y, Asano T, Takahashi K, Kogame N, Modolo R, Tenekecioglu E, Chang CC, Tomaniak M, Kukreja N, Wykrzykowska JJ, Piek JJ, Serruys PW, Onuma Y. Mechanical properties and performances of contemporary drug-eluting stent: focus on the metallic backbone. Expert Rev Med Devices 2019; 16:211-228. [DOI: 10.1080/17434440.2019.1573142] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ply Chichareon
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Division of Cardiovascular Medicine, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Yuki Katagiri
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Taku Asano
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Kuniaki Takahashi
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Norihiro Kogame
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rodrigo Modolo
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Internal Medicine, Cardiology Division, University of Campinas (UNICAMP). Campinas, Sao Paulo, Brazil
| | | | - Chun-Chin Chang
- ThoraxCenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mariusz Tomaniak
- ThoraxCenter, Erasmus Medical Center, Rotterdam, the Netherlands
- First Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Neville Kukreja
- Department of Cardiology, East and North Hertfordshire NHS Trust, Hertfordshire, UK
| | | | - Jan J. Piek
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Patrick W. Serruys
- International Centre for Circulatory Health, NHLI, Imperial College London, London, UK
| | - Yoshinobu Onuma
- ThoraxCenter, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
7
|
Electrochemical characterization and thermodynamic tendency of β-Lactoglobulin adsorption on 3D printed stainless steel. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.04.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Jung D, Rejinold NS, Kwak JE, Park SH, Kim YC. Nano-patterning of a stainless steel microneedle surface to improve the dip-coating efficiency of a DNA vaccine and its immune response. Colloids Surf B Biointerfaces 2017; 159:54-61. [PMID: 28780461 DOI: 10.1016/j.colsurfb.2017.07.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022]
Abstract
DNA vaccination with microneedles (MNs) into the skin represents a potential therapeutic approach for the clinical treatment of viral diseases as well as for intradermal genetic immunization. In this study, we investigated a DNA vaccination against the severe fever with thrombocytopenia syndrome virus (SFTSV) delivered by nano-patterned microneedles (nMNs) to improve the efficiency compared to a conventional MN vaccination. Because DNA vaccinations delivered by coated MNs have major disadvantages such as a poor coating efficiency and immunogenicity, additional excipients are necessary. Therefore, we developed nMNs to improve the affinity of stainless steel for plasmid DNA vaccinations. The results show that the nMNs have an improved DNA vaccine loading capacity because their surfaces have an increased hydrophilicity from the high surface/volume ratio. The cytocompatibility analysis also showed a higher cell proliferation when using the nMNs. Finally, the in vivo experiments with balb/c mice vaccinated with the SFTSV DNA vaccine-coated nMNs generated a higher level of cellular immune responses than that of the unmodified MNs.
Collapse
Affiliation(s)
- Daeyoon Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - N Sanoj Rejinold
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Jeong-Eun Kwak
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Su-Hyung Park
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
9
|
Skoog SA, Kumar G, Narayan RJ, Goering PL. Biological responses to immobilized microscale and nanoscale surface topographies. Pharmacol Ther 2017; 182:33-55. [PMID: 28720431 DOI: 10.1016/j.pharmthera.2017.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular responses are highly influenced by biochemical and biomechanical interactions with the extracellular matrix (ECM). Due to the impact of ECM architecture on cellular responses, significant research has been dedicated towards developing biomaterials that mimic the physiological environment for design of improved medical devices and tissue engineering scaffolds. Surface topographies with microscale and nanoscale features have demonstrated an effect on numerous cellular responses, including cell adhesion, migration, proliferation, gene expression, protein production, and differentiation; however, relationships between biological responses and surface topographies are difficult to establish due to differences in cell types and biomaterial surface properties. Therefore, it is important to optimize implant surface feature characteristics to elicit desirable biological responses for specific applications. The goal of this work was to review studies investigating the effects of microstructured and nanostructured biomaterials on in vitro biological responses through fabrication of microscale and nanoscale surface topographies, physico-chemical characterization of material surface properties, investigation of protein adsorption dynamics, and evaluation of cellular responses in specific biomedical applications.
Collapse
Affiliation(s)
- Shelby A Skoog
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC, United States
| | - Girish Kumar
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC, United States
| | - Peter L Goering
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States.
| |
Collapse
|
10
|
Mohan CC, Cherian AM, Kurup S, Joseph J, Nair MB, Vijayakumar M, Nair SV, Menon D. Stable Titania Nanostructures on Stainless Steel Coronary Stent Surface for Enhanced Corrosion Resistance and Endothelialization. Adv Healthc Mater 2017; 6. [PMID: 28272784 DOI: 10.1002/adhm.201601353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/17/2017] [Indexed: 11/09/2022]
Abstract
Stainless steel (SS) coronary stents continue to present risk of in-stent restenosis that impact its long term safety and efficacy. The present work focuses on developing a drug-free and polymer-less surface on coronary stents by utilizing a titania (TiO2 ) nanotexturing approach through hydrothermal processing, that will offer improved stent performance in vivo. Mechanically stable and durable nanotextured coatings are obtained on SS stents that also offer good corrosion resistance. In vitro vascular cell (endothelial and smooth muscle cells) studies on surface modified SS show preferential rapid endothelialization with enhanced nitric oxide production and reduce smooth muscle cell proliferation, in comparison to unmodified SS. In vivo evaluation of the nanotextured stents after subcutaneous implantation in rabbits show reduced irritability and minimal localized inflammatory response. These beneficial effects suggest that the stable, easily scalable titania nanosurface modification strategy on coronary stent surfaces can be a much cheaper alternative to drug eluting stents in addressing in-stent restenosis.
Collapse
Affiliation(s)
- Chandini C. Mohan
- Centre for Nanosciences & Molecular Medicine; Amrita University; Ponekkara P. O. Cochin 682041 Kerala India
| | - Aleena Mary Cherian
- Centre for Nanosciences & Molecular Medicine; Amrita University; Ponekkara P. O. Cochin 682041 Kerala India
| | - Sujish Kurup
- Centre for Nanosciences & Molecular Medicine; Amrita University; Ponekkara P. O. Cochin 682041 Kerala India
| | - John Joseph
- Centre for Nanosciences & Molecular Medicine; Amrita University; Ponekkara P. O. Cochin 682041 Kerala India
| | - Manitha B. Nair
- Centre for Nanosciences & Molecular Medicine; Amrita University; Ponekkara P. O. Cochin 682041 Kerala India
| | - Maniyal Vijayakumar
- Centre for Nanosciences & Molecular Medicine; Amrita University; Ponekkara P. O. Cochin 682041 Kerala India
| | - Shantikumar V. Nair
- Centre for Nanosciences & Molecular Medicine; Amrita University; Ponekkara P. O. Cochin 682041 Kerala India
| | - Deepthy Menon
- Centre for Nanosciences & Molecular Medicine; Amrita University; Ponekkara P. O. Cochin 682041 Kerala India
| |
Collapse
|
11
|
Antibacterial and cytocompatible nanotextured Ti surface incorporating silver via single step hydrothermal processing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:115-124. [DOI: 10.1016/j.msec.2017.02.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/14/2016] [Accepted: 02/08/2017] [Indexed: 01/15/2023]
|
12
|
Skoog SA, Lu Q, Malinauskas RA, Sumant AV, Zheng J, Goering PL, Narayan RJ, Casey BJ. Effects of nanotopography on the in vitro hemocompatibility of nanocrystalline diamond coatings. J Biomed Mater Res A 2016; 105:253-264. [PMID: 27543370 DOI: 10.1002/jbm.a.35872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/29/2016] [Accepted: 08/18/2016] [Indexed: 01/14/2023]
Abstract
Nanocrystalline diamond (NCD) coatings have been investigated for improved wear resistance and enhanced hemocompatibility of cardiovascular devices. The goal of this study was to evaluate the effects of NCD surface nanotopography on in vitro hemocompatibility. NCD coatings with small (NCD-S) and large (NCD-L) grain sizes were deposited using microwave plasma chemical vapor deposition and characterized using scanning electron microscopy, atomic force microscopy, contact angle testing, and Raman spectroscopy. NCD-S coatings exhibited average grain sizes of 50-80 nm (RMS 5.8 nm), while NCD-L coatings exhibited average grain sizes of 200-280 nm (RMS 23.1 nm). In vitro hemocompatibility testing using human blood included protein adsorption, hemolysis, nonactivated partial thromboplastin time, platelet adhesion, and platelet activation. Both NCD coatings demonstrated low protein adsorption, a nonhemolytic response, and minimal activation of the plasma coagulation cascade. Furthermore, the NCD coatings exhibited low thrombogenicity with minimal platelet adhesion and aggregation, and similar morphological changes to surface-bound platelets (i.e., activation) in comparison to the HDPE negative control material. For all assays, there were no significant differences in the blood-material interactions of NCD-S versus NCD-L. The two tested NCD coatings, regardless of nanotopography, had similar hemocompatibility profiles compared to the negative control material (HDPE) and should be further evaluated for use in blood-contacting medical devices. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 253-264, 2017.
Collapse
Affiliation(s)
- Shelby A Skoog
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina.,Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| | - Qijin Lu
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| | - Richard A Malinauskas
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| | - Anirudha V Sumant
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois
| | - Jiwen Zheng
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| | - Peter L Goering
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina
| | - Brendan J Casey
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|