1
|
Bouazzaoui A, Abdellatif AA. Vaccine delivery systems and administration routes: Advanced biotechnological techniques to improve the immunization efficacy. Vaccine X 2024; 19:100500. [PMID: 38873639 PMCID: PMC11170481 DOI: 10.1016/j.jvacx.2024.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Since the first use of vaccine tell the last COVID-19 pandemic caused by spread of SARS-CoV-2 worldwide, the use of advanced biotechnological techniques has accelerated the development of different types and methods for immunization. The last pandemic showed that the nucleic acid-based vaccine, especially mRNA, has an advantage in terms of development time; however, it showed a very critical drawback namely, the higher costs when compared to other strategies, and its inability to protect against new variants. This showed the need of more improvement to reach a better delivery and efficacy. In this review we will describe different vaccine delivery systems including, the most used viral vector, and also variable strategies for delivering of nucleic acid-based vaccines especially lipid-based nanoparticles formulation, polymersomes, electroporation and also the new powerful tools for the delivery of mRNA, which is based on the use of cell-penetrating peptides (CPPs). Additionally, we will also discuss the main challenges associated with each system. Finlay, the efficacy and safety of the vaccines depends not only on the formulations and delivery systems, but also the dosage and route of administration are also important players, therefore we will see the different routes for the vaccine administration including traditionally routes (intramuscular, Transdermal, subcutaneous), oral inhalation or via nasal mucosa, and will describe the advantages and disadvantage of each administration route.
Collapse
Affiliation(s)
- Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
- Science and Technology Unit, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Ahmed A.H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, 51452 Qassim, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, 71524 Assiut, Egypt
| |
Collapse
|
2
|
Ye L, Chen W, Chen Y, Qiu Y, Yi J, Li X, Lin Q, Guo B. Functionalized multiwalled carbon nanotube-ethosomes for transdermal delivery of ketoprofen: Ex vivo and in vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Cordeiro AS, Patil-Sen Y, Shivkumar M, Patel R, Khedr A, Elsawy MA. Nanovaccine Delivery Approaches and Advanced Delivery Systems for the Prevention of Viral Infections: From Development to Clinical Application. Pharmaceutics 2021; 13:2091. [PMID: 34959372 PMCID: PMC8707864 DOI: 10.3390/pharmaceutics13122091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Viral infections causing pandemics and chronic diseases are the main culprits implicated in devastating global clinical and socioeconomic impacts, as clearly manifested during the current COVID-19 pandemic. Immunoprophylaxis via mass immunisation with vaccines has been shown to be an efficient strategy to control such viral infections, with the successful and recently accelerated development of different types of vaccines, thanks to the advanced biotechnological techniques involved in the upstream and downstream processing of these products. However, there is still much work to be done for the improvement of efficacy and safety when it comes to the choice of delivery systems, formulations, dosage form and route of administration, which are not only crucial for immunisation effectiveness, but also for vaccine stability, dose frequency, patient convenience and logistics for mass immunisation. In this review, we discuss the main vaccine delivery systems and associated challenges, as well as the recent success in developing nanomaterials-based and advanced delivery systems to tackle these challenges. Manufacturing and regulatory requirements for the development of these systems for successful clinical and marketing authorisation were also considered. Here, we comprehensively review nanovaccines from development to clinical application, which will be relevant to vaccine developers, regulators, and clinicians.
Collapse
Affiliation(s)
- Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Yogita Patil-Sen
- Wrightington, Wigan and Leigh Teaching Hospitals NHS Foundation Trust, National Health Service, Wigan WN6 0SZ, UK;
| | - Maitreyi Shivkumar
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Ronak Patel
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Abdulwahhab Khedr
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. Elsawy
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| |
Collapse
|
4
|
Anaya‐Plaza E, Shaukat A, Lehtonen I, Kostiainen MA. Biomolecule-Directed Carbon Nanotube Self-Assembly. Adv Healthc Mater 2021; 10:e2001162. [PMID: 33124183 DOI: 10.1002/adhm.202001162] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/12/2020] [Indexed: 12/26/2022]
Abstract
The strategy of combining biomolecules and synthetic components to develop biohybrids is becoming increasingly popular for preparing highly customized and biocompatible functional materials. Carbon nanotubes (CNTs) benefit from bioconjugation, allowing their excellent properties to be applied to biomedical applications. This study reviews the state-of-the-art research in biomolecule-CNT conjugates and discusses strategies for their self-assembly into hierarchical structures. The review focuses on various highly ordered structures and the interesting properties resulting from the structural order. Hence, CNTs conjugated with the most relevant biomolecules, such as nucleic acids, peptides, proteins, saccharides, and lipids are discussed. The resulting well-defined composites allow the nanoscale properties of the CNTs to be exploited at the micro- and macroscale, with potential applications in tissue engineering, sensors, and wearable electronics. This review presents the underlying chemistry behind the CNT-based biohybrid materials and discusses the future directions of the field.
Collapse
Affiliation(s)
- Eduardo Anaya‐Plaza
- Department of Bioproducts and Biosystems Aalto University Kemistintie 1 Espoo 02150 Finland
| | - Ahmed Shaukat
- Department of Bioproducts and Biosystems Aalto University Kemistintie 1 Espoo 02150 Finland
| | - Inka Lehtonen
- Department of Bioproducts and Biosystems Aalto University Kemistintie 1 Espoo 02150 Finland
| | - Mauri A. Kostiainen
- Department of Bioproducts and Biosystems Aalto University Kemistintie 1 Espoo 02150 Finland
| |
Collapse
|
5
|
Liu X, Liu T, Song J, Hai Y, Luan F, Zhang H, Yuan Y, Li H, Zhao C. Understanding the interaction of single-walled carbon nanotube (SWCNT) on estrogen receptor: A combined molecular dynamics and experimental study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:373-379. [PMID: 30731268 DOI: 10.1016/j.ecoenv.2019.01.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Considering the large-scale production of diversified nanomaterials, it is paramount importance to unravel the structural details of interactions between nanoparticles and biological systems, and thus to explore the potential adverse impacts of nanoparticles. Estrogen receptors (ER) is one of the most important receptor of human reproductive system and the binding of carbon nanotubes to estrogen receptors was the possible trigger leading to the reproductive toxicity of carbon nanotubes. Thus, with single-walled carbon nanotube (SWCNT) treated as model nanomaterials, a combination of in vivo experiments, spectroscopy assay and molecular dynamic modeling was applied to help us unravel some important issues on the binding characterization between SWCNT and the ligand binding domain (LBD) of ER alpha (ERα). The fluorescence assay and molecular dynamics simulations together validated the binding of SWCNT to ERα, suggesting the possible molecular initiating event. As a consequence, SWCNT binding led to a conformational change on tertiary structure levels and hydrophobic interaction was recognized as the driving force governing the binding behavior between SWCNT and LBD of ERα. A in vivo process presented that the exposure of SWCNT increased ERα expression from 26.43 pg/ml to 259.01 pg/ml, suggesting a potential estrogen interference effects of SWCNT. Our study offers insight on the binding of SWCNT and ERα LBD at atomic level, helpful to accurately evaluate the potential health risks of SWCNT.
Collapse
Affiliation(s)
- Xinhe Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Tingting Liu
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730000, China
| | - Juanjuan Song
- Pulmonary Hospital of Lanzhou, Lanzhou 730000, China
| | - Ying Hai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264000, China
| | - Haixia Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yongna Yuan
- School of Information Science & Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hongyu Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
6
|
Narain A, Asawa S, Chhabria V, Patil-Sen Y. Cell membrane coated nanoparticles: next-generation therapeutics. Nanomedicine (Lond) 2017; 12:2677-2692. [PMID: 28965474 DOI: 10.2217/nnm-2017-0225] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell membrane coated nanoparticles (NPs) is a biomimetic strategy developed to engineer therapeutic devices consisting of a NP core coated with membrane derived from natural cells such as erythrocytes, white blood cells, cancer cells, stem cells, platelets or bacterial cells. These biomimetic NPs have gained a lot of attention recently owing to their cell surface mimetic features and tailored nanomaterial characteristics. They have shown strong potential in diagnostic and therapeutic applications including those in drug delivery, immune modulation, vaccination and detoxification. Herein we review the various types of cell membrane coated NPs reported in the literature and the unique strengths of these biomimetic NPs with an emphasis on how these bioinspired camouflage strategies have led to improved therapeutic efficacy. We also highlight the recent progress made by each platform in advancing healthcare and precis the major challenges associated with these NPs.
Collapse
Affiliation(s)
- Ashwin Narain
- Department of Biotechnology, National Institute of Technology, Warangal - 506004, TS, India
| | - Simran Asawa
- Department of Biotechnology, National Institute of Technology, Warangal - 506004, TS, India.,Warsaw University of Life Sciences, Warsaw, Poland
| | - Vikesh Chhabria
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Yogita Patil-Sen
- School of Physical Sciences & Computing, University of Central Lancashire, Preston, UK
| |
Collapse
|
7
|
Majid A, Patil-Sen Y, Ahmed W, Sen T. Tunable Self-Assembled Peptide Structure: A Novel Approach to Design Dual-Use Biological Agents. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.matpr.2017.01.190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Kulkarni CV, Yaghmur A, Steinhart M, Kriechbaum M, Rappolt M. Effects of High Pressure on Internally Self-Assembled Lipid Nanoparticles: A Synchrotron Small-Angle X-ray Scattering (SAXS) Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11907-11917. [PMID: 27782407 DOI: 10.1021/acs.langmuir.6b03300] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present the first report on the effects of hydrostatic pressure on colloidally stabilized lipid nanoparticles enveloping inverse nonlamellar self-assemblies in their interiors. These internal self-assemblies were systematically tuned into bicontinuous cubic (Pn3m and Im3m), micellar cubic (Fd3m), hexagonal (H2), and inverse micellar (L2) phases by regulating the lipid/oil ratio as the hydrostatic pressure was varied from atmospheric pressure to 1200 bar and back to atmospheric pressure. The effects of pressure on these lipid nanoparticles were compared with those on their equilibrium bulk, nondispersed counterparts, namely, inverse nonlamellar liquid-crystalline phases and micellar solutions under excess-water conditions, using the synchrotron small-angle X-ray scattering (SAXS) technique. In the applied pressure range, induced phase transitions were observed solely in fully hydrated bulk samples, whereas the internal self-assemblies of the corresponding lipid nanoparticles displayed only pressure-modulated single phases. Interestingly, both the lattice parameters and the linear pressure expansion coefficients were larger for the self-assemblies enveloped inside the lipid nanoparticles as compared to the bulk states. This behavior can, in part, be attributed to enhanced lipid layer undulations in the lipid particles in addition to induced swelling effects in the presence of the triblock copolymer F127. The bicontinuous cubic phases both in the bulk state and inside lipid cubosome nanoparticles swell on compression, even as both keep swelling further upon decompression at relatively high pressures before shrinking again at ambient pressures. The pressure dependence of the phases is also modulated by the concentration of the solubilized oil (tetradecane). These studies demonstrate the tolerance of lipid nanoparticles [cubosomes, hexosomes, micellar cubosomes, and emulsified microemulsions (EMEs)] for high pressures, confirming their robustness for various technological applications.
Collapse
Affiliation(s)
- Chandrashekhar V Kulkarni
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Centre for Materials Science, School of Physical Sciences and Computing, University of Central Lancashire , Preston PR1 2HE, United Kingdom
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , DK-2100 Copenhagen, Denmark
| | - Milos Steinhart
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , 162 06 Prague, Czech Republic
| | - Manfred Kriechbaum
- Institute of Inorganic Chemistry, Graz University of Technology , A-8010 Graz, Austria
| | - Michael Rappolt
- Institute of Inorganic Chemistry, Graz University of Technology , A-8010 Graz, Austria
- School of Food Science & Nutrition, University of Leeds , Leeds LS2 9JT, U.K
| |
Collapse
|
9
|
|
10
|
Kulkarni CV, Moinuddin Z, Agarwal Y. Effect of fullerene on the dispersibility of nanostructured lipid particles and encapsulation in sterically stabilized emulsions. J Colloid Interface Sci 2016; 480:69-75. [PMID: 27416287 DOI: 10.1016/j.jcis.2016.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 01/27/2023]
Abstract
We report on the effect of fullerenes (C60) on the stability of nanostructured lipid emulsions. These (oil-in-water) emulsions are essentially aqueous dispersions of lipid particles exhibiting self-assembled nanostructures at their cores. The majority of previous studies on fullerenes were focused on planar and spherical lipid bilayer systems including pure lipids and liposomes. In this work, fullerenes were interacted with a lipid that forms nanostructured dispersions of non-lamellar self-assemblies. A range of parameters including the composition of emulsions and sonication parameters were examined to determine the influence of fullerenes on in-situ and pre-stabilized lipid emulsions. We found that fullerenes mutually stabilize very low concentrations of lipid molecules, while other concentration emulsions struggle to stay stable or even to form at first instance; we provide hypotheses to support these observations. Interestingly though, we were able to encapsulate varying amounts of fullerenes in sterically stabilized emulsions. This step has a significant positive impact, as we could effectively control an inherent aggregation tendency of fullerenes in aqueous environments. These novel hybrid nanomaterials may open a range of avenues for biotechnological and biomedical applications exploiting properties of both lipid and fullerene nanostructures.
Collapse
Affiliation(s)
- Chandrashekhar V Kulkarni
- Centre for Materials Science, School of Physical Sciences and Computing, University of Central Lancashire, Preston PR1 2HE, United Kingdom.
| | - Zeinab Moinuddin
- Centre for Materials Science, School of Physical Sciences and Computing, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Yash Agarwal
- Centre for Materials Science, School of Physical Sciences and Computing, University of Central Lancashire, Preston PR1 2HE, United Kingdom; Metallurgical Engineering & Material Science Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Patil-Sen Y, Sadeghpour A, Rappolt M, Kulkarni CV. Facile Preparation of Internally Self-assembled Lipid Particles Stabilized by Carbon Nanotubes. J Vis Exp 2016:53489. [PMID: 26967650 PMCID: PMC4828174 DOI: 10.3791/53489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We present a facile method to prepare nanostructured lipid particles stabilized by carbon nanotubes (CNTs). Single-walled (pristine) and multi-walled (functionalized) CNTs are used as stabilizers to produce Pickering type oil-in-water (O/W) emulsions. Lipids namely, Dimodan U and Phytantriol are used as emulsifiers, which in excess water self-assemble into the bicontinuous cubic Pn3m phase. This highly viscous phase is fragmented into smaller particles using a probe ultrasonicator in presence of conventional surfactant stabilizers or CNTs as done here. Initially, the CNTs (powder form) are dispersed in water followed by further ultrasonication with the molten lipid to form the final emulsion. During this process the CNTs get coated with lipid molecules, which in turn are presumed to surround the lipid droplets to form a particulate emulsion that is stable for months. The average size of CNT-stabilized nanostructured lipid particles is in the submicron range, which compares well with the particles stabilized using conventional surfactants. Small angle X-ray scattering data confirms the retention of the original Pn3m cubic phase in the CNT-stabilized lipid dispersions as compared to the pure lipid phase (bulk state). Blue shift and lowering of the intensities in characteristic G and G' bands of CNTs observed in Raman spectroscopy characterize the interaction between CNT surface and lipid molecules. These results suggest that the interactions between the CNTs and lipids are responsible for their mutual stabilization in aqueous solutions. As the concentrations of CNTs employed for stabilization are very low and lipid molecules are able to functionalize the CNTs, the toxicity of CNTs is expected to be insignificant while their biocompatibility is greatly enhanced. Hence the present approach finds a great potential in various biomedical applications, for instance, for developing hybrid nanocarrier systems for the delivery of multiple functional molecules as in combination therapy or polytherapy.
Collapse
Affiliation(s)
- Yogita Patil-Sen
- Centre for Materials Science, School of Physical Sciences and Computing, University of Central Lancashire
| | | | | | - Chandrashekhar V Kulkarni
- Centre for Materials Science, School of Physical Sciences and Computing, University of Central Lancashire;
| |
Collapse
|
12
|
Mehra NK, Jain NK. Multifunctional hybrid-carbon nanotubes: new horizon in drug delivery and targeting. J Drug Target 2015; 24:294-308. [PMID: 26147085 DOI: 10.3109/1061186x.2015.1055571] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon nanotubes (CNTs) have emerged as an intriguing nanotechnological tool for numerous biomedical applications including biocompatible modules for the bioactives delivery ascribed to their unique properties, such as greater loading efficiency, biocompatibility, non-immunogenicity, high surface area and photoluminescence, that make them ideal candidate in pharmaceutical and biomedical science. The design of multifunctional hybrid-CNTs for drug delivery and targeting may differ from the conventional drug delivery system. The conventional nanocarriers have few limitations, such as inappropriate availability of surface-chemical functional groups for conjugation, low entrapment/loading efficiency as well as stability as per ICH guidelines with generally regarded as safe (GRAS) prominences. The multifunctional hybrid-CNTs will sparked and open a new door for researchers, scientist of the pharmaceutical and biomedical arena. This review summarizes the vivid aspects of CNTs like characterization, supramolecular chemistry of CNTs-dendrimer, CNTs-nanoparticles, CNTs-quantum dots conjugate for delivery of bioactives, not discussed so far.
Collapse
Affiliation(s)
- Neelesh Kumar Mehra
- a Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University , Sagar , India
| | - Narendra Kumar Jain
- a Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University , Sagar , India
| |
Collapse
|