1
|
Park S, Kim SH. Regioselective Growth of Colloidal Crystals Induced by Depletion Attraction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309938. [PMID: 37989520 DOI: 10.1002/adma.202309938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/02/2023] [Indexed: 11/23/2023]
Abstract
Colloidal crystals display photonic stopbands that generate reflective structural colors. While micropatterning offers significant value for various applications, the resolution is somewhat limited for conventional top-down approaches. In this work, a simple, single-step bottom-up approach is introduced to produce photonic micropatterns through depletion-mediated regioselective growth of colloidal crystals. Lithographically-featured micropatterns with planar surfaces and nano-needle arrays as substrates are employed. Heterogeneous nucleation is drastically suppressed on nano-needle arrays due to minimal particle-to-needles overlap of excluded volumes, while it is promoted on planar surfaces with large particle-to-plane volume overlap, enabling regioselective growth of colloidal crystals. This strategy allows high-resolution micropatterning of colloidal photonic crystals, with a minimum feature size as small as 10 µm. Stopband positions, or structural colors, are controllable through concentration and depletant and salt, as well as particle size. Notably, secondary colors can be created through structural color mixing by simultaneously crystallizing two different particle sizes into their own crystal grains, resulting in two distinct reflectance peaks at controlled wavelengths. The simple and highly reproducible method for regioselective colloidal crystallization provides a general route for designing elaborate photonic micropatterns suitable for various applications.
Collapse
Affiliation(s)
- Sanghyuk Park
- Department of Chemical and Biomolecular Engineering, and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Core/shell colloidal nanoparticles based multifunctional and robust photonic paper via drop-casting self-assembly for reversible mechanochromic and writing. J Colloid Interface Sci 2021; 603:834-843. [PMID: 34237601 DOI: 10.1016/j.jcis.2021.06.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/14/2021] [Accepted: 06/20/2021] [Indexed: 11/21/2022]
Abstract
Photonic crystals film that possesses periodic dielectric structure have shown great prospect in developing environmentally friendly paper alternatives due to the unique properties of dye free and non-photobleaching, but their practical application is limited by the weak interaction between colloidal particles. Although some progress has been obtained, it is still a challenge to develop photonic paper with the desired mechanical and optical properties. Herein, multifunctional hard core/soft shell nanoparticles with controlled size are fabricated by semi-continuous seed emulsion polymerization method. Compared with convention colloidal particles, these core/shell nanoparticles can facile self-assemble into large-scale dense ordered structure film via dried at room temperature due to the relatively low glass transition temperature (Tg) of the shell layers. The facile fabrication route enables the continuous high-through put production of the photonic papers. The as-formed papers not only possess the capacity to solvent (water/ethanol) rewritable and multicolor painting, but also can rapidly reversible mechanochromic. Moreover, due to the good compatibility of core/shell interface, these photonic films possess excellent mechanical properties, demonstrating that this multifunctional film makes the fabrication of novel robust rewritable papers possible and enables visual monitoring of deformation degree.
Collapse
|
3
|
Liu W, Bao L, Liu B, Liu R, Li L, Wu Z. Smart soft photonic dressing toward fast drug release and visualized self-monitoring. J Colloid Interface Sci 2020; 580:681-689. [DOI: 10.1016/j.jcis.2020.07.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 11/15/2022]
|
4
|
Yu J, Lee CH, Kan CW, Jin S. Fabrication of Structural-Coloured Carbon Fabrics by Thermal Assisted Gravity Sedimentation Method. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1133. [PMID: 32521724 PMCID: PMC7353355 DOI: 10.3390/nano10061133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022]
Abstract
Structural-coloured poly(styrene-methyl methacrylate-acrylic acid) (Poly(St-MMA-AA)) deposited carbon fabrics (Poly(St-MMA-AA)/PCFs) with fascinating colours (salmon, chartreuse, springgreen, skyblue, mediumpurple) changing with the (Poly(St-MMA-AA) nanoparticle sizes can be facilely fabricated by the thermal-assisted gravity sedimentation method that facilitates the self-assembly of Poly(St-MMA-AA) colloidal nanoparticles to generate photonic crystals. The particle sizes of Poly(St-MMA-AA) copolymer with core/shell structure varying from 308.3 nm to 213.1 nm were controlled by adjusting the amount of emulsifier during emulsion polymerisation. The presence of the intrinsic chemical information of Poly(St-MMA-AA) copolymer has been ascertained by Raman and Fourier Transform Infrared (FT-IR) Spectroscopy analysis. Colour variation of the as-prepared structural-coloured carbon fabrics (Poly(St-MMA-AA)/PCFs) before and after dipping treatment were captured while using an optical microscope. The structural colours of Poly(St-MMA-AA)/PCFs were assessed by calculating the diffraction bandgap according to Bragg's and Snell's laws. The Poly(St-MMA-AA) photonic crystal films altered the electrical properties of carbon fabrics with the resistivity growing by five orders of magnitude. The differential electrical resistivity between Poly(St-MMA-AA)/PCFs and wet Poly(St-MMA-AA)/PCFs combined with the corresponding tunable colours can be potentially applied in several promising areas, such as smart displays, especially signal warning displays for traffic safety.
Collapse
Affiliation(s)
| | | | - Chi-Wai Kan
- Institute of Textile and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China; (J.Y.); (C.H.L.); (S.J.)
| | | |
Collapse
|
5
|
Li W, Wang Y, Li M, Garbarini LP, Omenetto FG. Inkjet Printing of Patterned, Multispectral, and Biocompatible Photonic Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901036. [PMID: 31309624 DOI: 10.1002/adma.201901036] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/05/2019] [Indexed: 05/23/2023]
Abstract
Patterning of photonic crystals to generate rationally designed color-responsive materials has drawn considerable interest because of promising applications in optical storage, encryption, display, and sensing. Here, an inkjet-printing based strategy is presented for noncontact, rapid, and direct approaches to generate arbitrarily patterned photonic crystals. The strategy is based on the use of water-soluble biopolymer-based opal structures that can be reformed with high resolution through precise deposition of fluids on the photonic crystal lattice. The resulting digitally designed photonic lattice formats simultaneously exploit structural color and material transience opening avenues for information encoding and combining functions of optics, biomaterials, and environmental interfaces in a single device.
Collapse
Affiliation(s)
- Wenyi Li
- Silklab, Tufts University, 200 Boston Avenue, Suite 4875, Medford, MA, 02155, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Yu Wang
- Silklab, Tufts University, 200 Boston Avenue, Suite 4875, Medford, MA, 02155, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Meng Li
- Silklab, Tufts University, 200 Boston Avenue, Suite 4875, Medford, MA, 02155, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Logan P Garbarini
- Silklab, Tufts University, 200 Boston Avenue, Suite 4875, Medford, MA, 02155, USA
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA
| | - Fiorenzo G Omenetto
- Silklab, Tufts University, 200 Boston Avenue, Suite 4875, Medford, MA, 02155, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA
- Department of Physics, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
6
|
Kim JB, Lee SY, Lee JM, Kim SH. Designing Structural-Color Patterns Composed of Colloidal Arrays. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14485-14509. [PMID: 30943000 DOI: 10.1021/acsami.8b21276] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Structural coloration provides a great potential for various applications due to unique optical properties distinguished from conventional pigment colors. Structural colors are nonfading, iridescent, and tunable, which is difficult to achieve with pigments. In addition, structural color is potentially less toxic than pigments. However, it is challenging to develop structural colors because elaborate nanostructures are a prerequisite for the coloration. Furthermore, it is highly suggested the nanostructures be patterned at various length scales on a large area to provide practical formats. There have been intensive studies to develop pragmatic methods for producing structural-color patterns in a controlled manner using either colloidal crystals or glasses. This article reviews the current state of the art in the structural-color patterning based on the colloidal arrays. We first discuss common and different features between colloidal crystals and glasses. We then categorize colloidal arrays into six distinct structures of 3D opals, inverse opals, non-close-packed arrays, 2D colloidal crystals, 1D colloidal strings, and 3D amorphous arrays and study various methods to make them patterned from recent key contributions. Finally, we outline the current challenges and future perspectives of the structural-color patterns.
Collapse
Affiliation(s)
- Jong Bin Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program) , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Seung Yeol Lee
- Department of Chemical and Biomolecular Engineering (BK21+ Program) , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Jung Min Lee
- The Fourth R&D Institute , Agency for Defense Development , Daejeon 34060 , Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program) , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| |
Collapse
|
7
|
Shao T, Sun L, Yang C, Ye X, Chen S, Luo X. Convenient and Efficient Fabrication of Colloidal Crystals Based on Solidification-Induced Colloidal Assembly. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E575. [PMID: 30970558 PMCID: PMC6523247 DOI: 10.3390/nano9040575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 11/16/2022]
Abstract
The simple yet efficient and versatile fabrication of colloidal crystals was investigated based on the solidification-induced colloidal crystallization process with particle/water suspension as precursor. The resulting colloidal crystals were constituted by crystal grains with sizes ranging from several tens of micrometers to a few millimeters. Each of the grains had a close-hexagonal array of colloids, which endowed the bulk colloidal crystal powders with some specific optical properties. The freezing of water was shown as the major driving force to form colloidal crystal grains, which supersaturated the solution with nanoparticles and thus induced the formation and growth of colloidal crystal seeds. This process is intrinsically different from those conventional methods based on shearing force, surface tension, columbic interaction or magnetic interaction, revealing a new strategy to fabricate colloidal crystals in a convenient and efficient way.
Collapse
Affiliation(s)
- Ting Shao
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China.
| | - Laixi Sun
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China.
| | - Chun Yang
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China.
| | - Xin Ye
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China.
| | - Shufan Chen
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China.
| | - Xuan Luo
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China.
| |
Collapse
|
8
|
Wang X, Gao B, Gu Z. Bioinspired transfer method for the patterning of multiple nanomaterials. RSC Adv 2019; 9:4351-4360. [PMID: 35520155 PMCID: PMC9060598 DOI: 10.1039/c9ra00346k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/30/2019] [Indexed: 11/21/2022] Open
Abstract
Patterned nanomaterials have promising applications in various fields, particularly for microfluidic analysis and functional surfaces.
Collapse
Affiliation(s)
- Xuan Wang
- College of Safety Science and Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Bingbing Gao
- School of Pharmaceutical Sciences and School of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| |
Collapse
|
9
|
Abstract
Colloidal transformation based on simple physicochemical processes has produced a wide variety of functional structures for different applications. But the lack of local selectivity of conventional transformation methods makes the fabrication of nanodevices with desired optical properties challenging. Here, we use a laser beam to transform spherical polystyrene (PS) beads into bull's eye-shaped nanopatterns or concentric nanorings, depending on the time of irradiation. The final morphologies are dependent on the size of the PS beads and the dielectric nature of the substrates. The simulated near field features show that it is the selective hollowing of PS beads that results in collapsing and buckling of the shells. This understanding provides a new route towards unconventional colloidal nanostructures and defect engineering in 2D photonic crystals that can be locally and selectively controlled by light.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, China.
| | | |
Collapse
|
10
|
Zhong K, Li J, Liu L, Van Cleuvenbergen S, Song K, Clays K. Instantaneous, Simple, and Reversible Revealing of Invisible Patterns Encrypted in Robust Hollow Sphere Colloidal Photonic Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707246. [PMID: 29726040 DOI: 10.1002/adma.201707246] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/08/2018] [Indexed: 05/23/2023]
Abstract
The colors of photonic crystals are based on their periodic crystalline structure. They show clear advantages over conventional chromophores for many applications, mainly due to their anti-photobleaching and responsiveness to stimuli. More specifically, combining colloidal photonic crystals and invisible patterns is important in steganography and watermarking for anticounterfeiting applications. Here a convenient way to imprint robust invisible patterns in colloidal crystals of hollow silica spheres is presented. While these patterns remain invisible under static environmental humidity, even up to near 100% relative humidity, they are unveiled immediately (≈100 ms) and fully reversibly by dynamic humid flow, e.g., human breath. They reveal themselves due to the extreme wettability of the patterned (etched) regions, as confirmed by contact angle measurements. The liquid surface tension threshold to induce wetting (revealing the imprinted invisible images) is evaluated by thermodynamic predictions and subsequently verified by exposure to various vapors with different surface tension. The color of the patterned regions is furthermore independently tuned by vapors with different refractive indices. Such a system can play a key role in applications such as anticounterfeiting, identification, and vapor sensing.
Collapse
Affiliation(s)
- Kuo Zhong
- Department of Chemistry KU Leuven, Celestijnenlaan 200D, Heverlee, B-3001, Leuven, Belgium
| | - Jiaqi Li
- IMEC, Kapeldreef 75, Heverlee, B-3001, Leuven, Belgium
| | - Liwang Liu
- Département d'Acoustique Physique UMR CNRS 5295, Université de Bordeaux, 351 cours de la libération, 33405, Talence, France
| | | | - Kai Song
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Koen Clays
- Department of Chemistry KU Leuven, Celestijnenlaan 200D, Heverlee, B-3001, Leuven, Belgium
| |
Collapse
|
11
|
Liu J, Liu J, Wu P, Zhang M, Wang J, Jiang L. Multiple solvent-response behavior of metal-organic inverse opals. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.09.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Yang B, Li L, Du K, Fan B, Long Y, Song K. Photo-responsive photonic crystals for broad wavelength shifts. Chem Commun (Camb) 2018. [DOI: 10.1039/c7cc09736k] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Benefiting from a photobase, an inverse opal photonic film affords a wavelength shift of more than 200 nm under irradiation.
Collapse
Affiliation(s)
- Bingquan Yang
- School of Materials Science and Engineering
- Zhengzhou University
- Henan 450001
- China
- Laboratory of Bio-Inspired Smart Interface Sciences
| | - Lu Li
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology
- Shaanxi University of Science and Technology
- Xi’ an 710021
- China
| | - Kuishan Du
- Laboratory of Bio-Inspired Smart Interface Sciences
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Bingbing Fan
- School of Materials Science and Engineering
- Zhengzhou University
- Henan 450001
- China
| | - Yue Long
- Laboratory of Bio-Inspired Smart Interface Sciences
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Kai Song
- Laboratory of Bio-Inspired Smart Interface Sciences
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
13
|
Du X, Wang J, Cui H, Zhao Q, Chen H, He L, Wang Y. Breath-Taking Patterns: Discontinuous Hydrophilic Regions for Photonic Crystal Beads Assembly and Patterns Revisualization. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38117-38124. [PMID: 28990758 DOI: 10.1021/acsami.7b10359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surfaces patterned with hydrophilic and hydrophobic regions provide robust and versatile means for investigating the wetting behaviors of liquids, surface properties analysis, and producing patterned arrays. However, the fabrication of integral and uniform arrays onto these open systems remains a challenge, thus restricting them from being used in practical applications. Here, we present a simple yet powerful approach for the fabrication of water droplet arrays and the assembly of photonic crystal bead arrays based on hydrophilic-hydrophobic patterned substrates. Various integral arrays are simply prepared in a high-quality output with a low cost, large scale, and uniform size control. By simply taking a breath, which brings moisture to the substrate surface, complex hydrophilic-hydrophobic outlined images can be revisualized in the discontinuous hydrophilic regions. Integration of hydrogel photonic crystal bead arrays into the "breath-taking" process results in breath-responsive photonic crystal beads, which can change their colors upon a mild exhalation. This state-of-the-art technology not only provides an effective methodology for the preparation of patterned arrays but also demonstrates intriguing applications in information storage and biochemical sensors.
Collapse
Affiliation(s)
- Xuemin Du
- Research Centre for Micro/Nano System and Bionic Medicine, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS) , Shenzhen 518055, China
| | - Juan Wang
- Research Centre for Micro/Nano System and Bionic Medicine, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS) , Shenzhen 518055, China
| | - Huanqing Cui
- Research Centre for Micro/Nano System and Bionic Medicine, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS) , Shenzhen 518055, China
| | - Qilong Zhao
- Research Centre for Micro/Nano System and Bionic Medicine, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS) , Shenzhen 518055, China
| | - Hongxu Chen
- Research Centre for Micro/Nano System and Bionic Medicine, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS) , Shenzhen 518055, China
| | - Le He
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University , Suzhou 215123, Jiangsu, China
| | - Yunlong Wang
- Research Centre for Micro/Nano System and Bionic Medicine, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS) , Shenzhen 518055, China
| |
Collapse
|
14
|
Wang Y, Aurelio D, Li W, Tseng P, Zheng Z, Li M, Kaplan DL, Liscidini M, Omenetto FG. Modulation of Multiscale 3D Lattices through Conformational Control: Painting Silk Inverse Opals with Water and Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28833734 DOI: 10.1002/adma.201702769] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/23/2017] [Indexed: 05/03/2023]
Abstract
Structural proteins from naturally occurring materials are an inspiring template for material design and synthesis at multiple scales. The ability to control the assembly and conformation of such materials offers the opportunity to define fabrication approaches that recapitulate the dimensional hierarchy and structure-function relationships found in nature. A simple and versatile directed assembly method of silk fibroin, which allows the design of structures across multiple dimensional scales by generating and tuning structural color in large-scale, macro defect-free colloidally assembled 3D nanostructures in the form of silk inverse opals (SIOs) is reported. This approach effectively combines bottom-up and top-down techniques to obtain control on the nanoscale (through silk conformational changes), microscale (through patterning), and macroscale (through colloidal assembly), ultimately resulting in a controllable photonic lattice with predefined spectral behavior, with a resulting palette spanning almost the entire visible range. As a demonstration of the approach, examples of "multispectral" SIOs, paired with theoretical calculations and analysis of their response as a function of changes of lattice constants and refractive index contrast are illustrated.
Collapse
Affiliation(s)
- Yu Wang
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
- Silklab, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Daniele Aurelio
- Dipartimento di Fisica, Università degli Studi di Pavia, via A. Bassi 6, 27100, Pavia, Italy
| | - Wenyi Li
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
- Silklab, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Peter Tseng
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
- Silklab, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Zhaozhu Zheng
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Meng Li
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
- Silklab, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
- Silklab, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Marco Liscidini
- Dipartimento di Fisica, Università degli Studi di Pavia, via A. Bassi 6, 27100, Pavia, Italy
| | - Fiorenzo G Omenetto
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
- Silklab, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
- Department of Physics, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| |
Collapse
|
15
|
Zhang Y, Fu Q, Ge J. Test-Paper-Like Photonic Crystal Viscometer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603351. [PMID: 28092431 DOI: 10.1002/smll.201603351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/27/2016] [Indexed: 06/06/2023]
Abstract
A test-paper-like photonic crystal (PC) viscometer is fabricated based on the positive correlation between viscosity and the infiltration time for viscous liquid to entirely soak the PC film. It can be broadly used in different occasions to quickly determine the viscosity for many liquids, considering its portable and disposable characteristics and the requirement of little samples.
Collapse
Affiliation(s)
- Yuqi Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qianqian Fu
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Jianping Ge
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
16
|
Self-Assembly of Colloidal Photonic Crystals of PS@PNIPAM Nanoparticles and Temperature-Responsive Tunable Fluorescence. J Fluoresc 2016; 26:2303-2310. [DOI: 10.1007/s10895-016-1926-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/26/2016] [Indexed: 10/20/2022]
|
17
|
Abstract
Nature has mastered the construction of nanostructures with well-defined macroscopic effects and purposes. Structural colouration is a visible consequence of the particular patterning of a reflecting surface with regular structures at submicron length scales. Structural colours usually appear bright, shiny, iridescent or with a metallic look, as a result of physical processes such as diffraction, interference, or scattering with a typically small dissipative loss. These features have recently attracted much research effort in materials science, chemistry, engineering and physics, in order to understand and produce structural colours. In these early stages of photonics, researchers facing an infinite array of possible colour-producing structures are heavily inspired by the elaborate architectures they find in nature. We review here the recent technological strategies employed to artificially mimic the structural colours found in nature, as well as some of their current and potential applications.
Collapse
Affiliation(s)
- Ahu Gümrah Dumanli
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | |
Collapse
|
18
|
Phillips KR, England GT, Sunny S, Shirman E, Shirman T, Vogel N, Aizenberg J. A colloidoscope of colloid-based porous materials and their uses. Chem Soc Rev 2016; 45:281-322. [DOI: 10.1039/c5cs00533g] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Colloids assemble into a variety of bioinspired structures for applications including optics, wetting, sensing, catalysis, and electrodes.
Collapse
Affiliation(s)
| | - Grant T. England
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Steffi Sunny
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Elijah Shirman
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
- Wyss Institute for Biologically Inspired Engineering
| | - Tanya Shirman
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
- Wyss Institute for Biologically Inspired Engineering
| | - Nicolas Vogel
- Institute of Particle Technology
- Friedrich-Alexander-University Erlangen-Nürnberg
- Erlangen
- Germany
- Cluster of Excellence Engineering of Advanced Materials
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology
- Harvard University
- Cambridge
- USA
- John A. Paulson School of Engineering and Applied Sciences
| |
Collapse
|
19
|
Schaffner M, England G, Kolle M, Aizenberg J, Vogel N. Combining Bottom-Up Self-Assembly with Top-Down Microfabrication to Create Hierarchical Inverse Opals with High Structural Order. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4334-40. [PMID: 26042571 DOI: 10.1002/smll.201500865] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/10/2015] [Indexed: 05/18/2023]
Abstract
Colloidal particles can assemble into ordered crystals, creating periodically structured materials at the nanoscale without relying on expensive equipment. The combination of small size and high order leads to strong interaction with visible light, which induces macroscopic, iridescent structural coloration. To increase the complexity and functionality, it is important to control the organization of such materials in hierarchical structures with high degrees of order spanning multiple length scales. Here, a bottom-up assembly of polystyrene particles in the presence of a silica sol-gel precursor material (tetraethylorthosilicate, TEOS), which creates crack-free inverse opal films with high positional order and uniform crystal alignment along the (110) crystal plane, is combined with top-down microfabrication techniques. Micrometer scale hierarchical superstructures having a highly regular internal nanostructure with precisely controlled crystal orientation and wall profiles are produced. The ability to combine structural order at the nano- and microscale enables the fabrication of materials with complex optical properties resulting from light-matter interactions at different length scales. As an example, a hierarchical diffraction grating, which combines Bragg reflection arising from the nanoscale periodicity of the inverse opal crystal with grating diffraction resulting from a micrometer scale periodicity, is demonstrated.
Collapse
Affiliation(s)
- Manuel Schaffner
- School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, MA, 02139, USA
| | - Grant England
- School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, MA, 02139, USA
| | - Mathias Kolle
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Joanna Aizenberg
- School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, MA, 02139, USA
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander-University Erlangen-Nürnberg, Haberstr. 9a, 91058, Erlangen, Germany
- Cluster of Excellence Engineering of Advanced Materials, Friedrich-Alexander-University Erlangen-Nürnberg, Nägelsbacherstr. 49, 91054, Erlangen, Germany
| |
Collapse
|
20
|
Vogel N, Retsch M, Fustin CA, del Campo A, Jonas U. Advances in Colloidal Assembly: The Design of Structure and Hierarchy in Two and Three Dimensions. Chem Rev 2015; 115:6265-311. [DOI: 10.1021/cr400081d] [Citation(s) in RCA: 531] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstrasse
4, 91058 Erlangen, Germany
- Cluster
of Excellence - Engineering of Advanced Materials, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Markus Retsch
- Physical
Chemistry 1 - Polymer Systems, University of Bayreuth, Universitätsstraße
30, 95447 Bayreuth, Germany
| | - Charles-André Fustin
- Institute
of Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter
Division (BSMA), Université catholique de Louvain, Place Louis
Pasteur 1, B-1348 Louvain-la-Neuve, Belgium
| | - Aranzazu del Campo
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ulrich Jonas
- Macromolecular
Chemistry, Cμ - The Research Center for Micro- and Nanochemistry
and Engineering, University of Siegen, Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
- Bio-Organic Materials Chemistry Laboratory (BOMCLab), Institute of Electronic Structure & Laser (IESL), Foundation for Research and Technology - Hellas (FORTH), Nikolaou Plastira 100, Vassilika Vouton, P.O. Box 1527, 71110 Heraklion, Crete, Greece
| |
Collapse
|
21
|
Ding T, Chen L, Long Y, Song K. Micro-patterning of 3D colloidal photonic crystals via solvent-assisted imprint lithography. RSC Adv 2015. [DOI: 10.1039/c4ra12958j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Micropatterning of colloidal photonic crystals (CPCs) is realised with a solvent-assisted imprinting technique.
Collapse
Affiliation(s)
- Tao Ding
- Nanophotonics Centre
- Cavendish Laboratory
- University of Cambridge
- UK
| | - Li Chen
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yue Long
- Laboratory of Bio-Inspired Smart Interface Science
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Kai Song
- Laboratory of Bio-Inspired Smart Interface Science
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|