1
|
Stepanova M, Nikiforov A, Tennikova T, Korzhikova-Vlakh E. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023; 15:2641. [PMID: 38004619 PMCID: PMC10674432 DOI: 10.3390/pharmaceutics15112641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Synthetic polypeptides are biocompatible and biodegradable macromolecules whose composition and architecture can vary over a wide range. Their unique ability to form secondary structures, as well as different pathways of modification and biofunctionalization due to the diversity of amino acids, provide variation in the physicochemical and biological properties of polypeptide-containing materials. In this review article, we summarize the advances in the synthesis of polypeptides and their copolymers and the application of these systems for drug delivery in the form of (nano)particles or hydrogels. The issues, such as the diversity of polypeptide-containing (nano)particle types, the methods for their preparation and drug loading, as well as the influence of physicochemical characteristics on stability, degradability, cellular uptake, cytotoxicity, hemolysis, and immunogenicity of polypeptide-containing nanoparticles and their drug formulations, are comprehensively discussed. Finally, recent advances in the development of certain drug nanoformulations for peptides, proteins, gene delivery, cancer therapy, and antimicrobial and anti-inflammatory systems are summarized.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Alexey Nikiforov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, Petergof, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| |
Collapse
|
2
|
Sun J, Chen J, Bi Y, Xiao Y, Ding L, Bai W. Fabrication and characterization of β-cyclodextrin-epichlorohydrin grafted carboxymethyl chitosan for improving the stability of Cyanidin-3-glucoside. Food Chem 2022; 370:130933. [PMID: 34507211 DOI: 10.1016/j.foodchem.2021.130933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023]
Abstract
Cyanidin-3-glucoside (C3G), an anthocyanin constituent of fruits and vegetables. It has been proven to possess numerous health benefits with no side effects. However, the poor stability of C3G is an intractable property that limits its application. Hence, the aim of this study is to improve the stability of C3G through the formation of well dispersed nanoparticles. In this study, C3G loaded β-CD-EP-CMC nanoparticles exhibited nearly spherical with good disperse and homogeneous morphology. Results also indicated that the nanoparticles formation of grafting of C3G to β-CD-EP-CMC could significantly improve the stability of C3G to against thermal or light degradation. Collectively, current results strongly aligned with the prospective purpose that the grafting of C3G to β-CD-EP-CMC nanoparticles could be treated as an effective approach for improving the stability. This study opens a new avenue for the utilization and development of novel wall materials β-CD-EP-CMC in C3G associated nutraceutical.
Collapse
Affiliation(s)
- Jianxia Sun
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Yanmei Bi
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yuhang Xiao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Lijun Ding
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
3
|
Jiang Q, Guan S, Zhang Y, Sun Y, Jiang X. Targeted and fluorescence traceable multifunctional host-guest supramolecular gene delivery platform based on poly(cyclodextrin) and rhodamine conjugated disulfide-containing azobenzene-terminated branched polymer. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2029438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Qimin Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Shuyi Guan
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou, P. R. China
| | - Yunti Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Yuhua Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
4
|
Liu Z, Ye L, Xi J, Wang J, Feng ZG. Cyclodextrin polymers: Structure, synthesis, and use as drug carriers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101408] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Zhang Z, Wen K, Zhang C, Laroche F, Wang Z, Zhou Q, Liu Z, Abrahams JP, Zhou X. Extracellular Nanovesicle Enhanced Gene Transfection Using Polyethyleneimine in HEK293T Cells and Zebrafish Embryos. Front Bioeng Biotechnol 2020; 8:448. [PMID: 32596214 PMCID: PMC7300290 DOI: 10.3389/fbioe.2020.00448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 04/17/2020] [Indexed: 01/24/2023] Open
Abstract
It is a hot topic to improve efficiency and decrease toxicity of gene transfection reagents. The extracellular nanovesicles (EVs) that are released by cells play an important role in intercellular communication and are naturally designed for genetic exchange between cells. Here, we show that the EVs have a large beneficial effect in polyethyleneimine (PEI)-mediated transfection of a GFP-encoding plasmid into HEK293T cells. An improvement of transfection efficiency of ~500% and a decrease in toxicity were observed in a specific concentration range of PEI. The EVs also greatly improved the transfection of the same plasmid into zebrafish embryos. To verify the generality of this gene transfection approach, we also tested the cell viability and gene transfection efficiency using two other plasmids (EpTEN and ELuc) and in another cell line (A549). The measured increase in transfection efficiency makes EV a promising candidate for enhancement of the quality of current PEI-based transfection technique.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Department of Science, China Pharmaceutical University, Nanjing, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kai Wen
- Department of Science, China Pharmaceutical University, Nanjing, China
| | - Chao Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fabrice Laroche
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Zhenglong Wang
- Department of Science, China Pharmaceutical University, Nanjing, China
| | - Qiang Zhou
- Department of Orthopaedics, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Pharmacy, Nankai University, Tianjin, China
| | | | - Xiang Zhou
- Department of Science, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Pharmacy, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Rasines Mazo A, Allison-Logan S, Karimi F, Chan NJA, Qiu W, Duan W, O’Brien-Simpson NM, Qiao GG. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem Soc Rev 2020; 49:4737-4834. [DOI: 10.1039/c9cs00738e] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides a comprehensive overview of the latest advances in the synthesis, architectural design and biomedical applications of polypeptides and their hybrids.
Collapse
Affiliation(s)
- Alicia Rasines Mazo
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Stephanie Allison-Logan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Fatemeh Karimi
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Nicholas Jun-An Chan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wenlian Qiu
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wei Duan
- School of Medicine
- Deakin University
- Geelong
- Australia
| | - Neil M. O’Brien-Simpson
- Centre for Oral Health Research
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology
- University of Melbourne
- Parkville
- Australia
| | - Greg G. Qiao
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| |
Collapse
|
7
|
SHEN J, WANG Q, GAO D, LYU Y, TANG G. [Synthesis and cell biological properties of polyaspartic acid drug/gene vector]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:657-667. [PMID: 31955541 PMCID: PMC8800674 DOI: 10.3785/j.issn.1008-9292.2019.12.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/15/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Taking polysuccinimide as the main chain, amine side chain and alkyl side chain were grafted to prepare the drug/gene co-delivery vector. The property of the polymers with various side links were investigated to select an optimal vector. METHODS Poly-D, L-polysuccinimide was synthesized by polymerization reaction of D, L-aspartic acid as monomer. Therefore, N, N-dimethylenedipropyl-triamine and 3, 3'-diaminodipropylamine were grafted with dodecylamine/adecylamine/octadecylamine at different proportions by ring-opening reaction to obtain amphiphilic PEECs. The structure of the material was confirmed by 1H NMR; the particle size and surface potential of the micelles were measured by dynamic light scattering; the critical micelle concentration (CMC) was determined by pyrene fluorescent probe; the RNA blocking ability was characterized by agarose gel electrophoresis; the release behavior of the PEECs was examined and the cytotoxicity, cellular uptake and gene silencing efficiency of the PEECs were studied at the cellular level. RESULTS A series of PEECs with different grafting rates was successfully synthesized. The particle sizes and surface potential of the PEEC derived micelles were between 250 nm and 350 nm and 27 mV and 45 mV, respectively, with a small CMC value. The RNA binding ratio of PEECs was at a mass ratio of about 0.8:1. MTT assay demonstrated that PEEC micelles had certain cytotoxicity. PEECs had excellent micelle formation, drug-loading and gene binding abilities, particularly, PEEC16-2 showed high gene silencing efficiency at the cellular level. CONCLUSIONS PEECs are able to co-delivery drug and gene, and PEEC16-2 micelles have the best ability of drug encapsulation and gene delivery.
Collapse
Affiliation(s)
| | | | | | | | - Guping TANG
- 汤谷平(1961-), 男, 博士, 教授, 博士生导师, 主要从事生物材料、药物的控制释放和基因治疗研究, E-mail:
;
https://orcid.org/0000-0003-3256-740X
| |
Collapse
|
8
|
Chuan D, Jin T, Fan R, Zhou L, Guo G. Chitosan for gene delivery: Methods for improvement and applications. Adv Colloid Interface Sci 2019; 268:25-38. [PMID: 30933750 DOI: 10.1016/j.cis.2019.03.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 03/19/2019] [Indexed: 02/05/2023]
Abstract
Gene therapy is a promising strategy for treating challenging diseases. The successful delivery of genes is a critical step for gene therapy. However, concerns about immunogenicity and toxicity are the main obstacles against the widespread use of effective viral systems. Therefore, nonviral vectors are regarded as good alternatives to viral vectors. Chitosan is a natural cationic polysaccharide that could be used to create nonviral gene delivery vectors. Various methods have been developed to improve the properties of chitosan related to gene delivery. This review introduces the features of chitosan in gene delivery, summarizes current progress toward methods promoting the properties of chitosan related to gene delivery, and presents different applications of chitosan in gene delivery vectors. Finally, future prospects of gene vectors based on chitosan are discussed.
Collapse
Affiliation(s)
- Di Chuan
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Tao Jin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Rangrang Fan
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Liangxue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| |
Collapse
|
9
|
Yavvari PS, Awasthi AK, Sharma A, Bajaj A, Srivastava A. Emerging biomedical applications of polyaspartic acid-derived biodegradable polyelectrolytes and polyelectrolyte complexes. J Mater Chem B 2019; 7:2102-2122. [DOI: 10.1039/c8tb02962h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A summary of positive biomedical attributes of biodegradable polyelectrolytes (PELs) prepared from aspartic acid is provided. The utility of these PELs in emerging applications such as biomineralization modulators, antimycobacterials, biocompatible cell encapsulants and tissue adhesives is highlighted.
Collapse
Affiliation(s)
- Prabhu Srinivas Yavvari
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhauri
- Bhopal-462066
- India
| | - Anand Kumar Awasthi
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhauri
- Bhopal-462066
- India
| | - Aashish Sharma
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhauri
- Bhopal-462066
- India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- NCR Biotech Science Cluster
- Faridabad-121001
- India
| | - Aasheesh Srivastava
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhauri
- Bhopal-462066
- India
| |
Collapse
|
10
|
Song HQ, Shao MY, Li Y, Ding XJ, Xu FJ. Multifunctional Delivery Nanosystems Formed by Degradable Antibacterial Poly(Aspartic Acid) Derivatives for Infected Skin Defect Therapy. Adv Healthc Mater 2019; 8:e1800889. [PMID: 30474285 DOI: 10.1002/adhm.201800889] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/19/2018] [Indexed: 12/31/2022]
Abstract
Nucleic acid (NA)-based therapy is promising for tissue repair, such as skin and bone defect therapy. However, bacterial infections often occur in the process of tissue healing. The ideal treatment of tissue repair requires both anti-infection and simultaneous tissue healing. The epidermal growth factor (EGF) plays an important role in wound healing processes. In this work, degradable antibacterial gene vectors based on tobramycin (clinically relevant antibiotic) conjugated poly(aspartic acid) (TPT) are proposed as multifunctional delivery nanosystems of plasmid encoding EGF (pEGF) to realize the antibacterial therapy and tissue healing of infected skin defects. TPT has low cytotoxicity and good degradability, which is helpful in the NA delivery process. TPT demonstrates good transfection performances and hemocompatibility, as well as excellent antibacterial activities in vitro. The outstanding pEGF delivery ability of TPT and the bioactivity of expressed EGF facilitate the proliferation of fibroblast cells. The effective in vivo infected skin defect therapy is also demonstrated with TPT/pEGF nanocomplexes, where skin tissue healing is promoted. The present work opens new avenues for the design of multifunctional delivery nanosystems with antibacterial ability to treat infected tissue defect.
Collapse
Affiliation(s)
- Hai-Qing Song
- State Key Laboratory of Chemical Resource Engineering; Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology); Ministry of Education; Beijing Laboratory of Biomedical Materials, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Mei-Yu Shao
- State Key Laboratory of Chemical Resource Engineering; Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology); Ministry of Education; Beijing Laboratory of Biomedical Materials, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering; Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology); Ministry of Education; Beijing Laboratory of Biomedical Materials, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Xue-Jia Ding
- State Key Laboratory of Chemical Resource Engineering; Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology); Ministry of Education; Beijing Laboratory of Biomedical Materials, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering; Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology); Ministry of Education; Beijing Laboratory of Biomedical Materials, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| |
Collapse
|
11
|
Song HQ, Pan W, Li RQ, Yu B, Liu W, Yang M, Xu FJ. Rodlike Supramolecular Nanoassemblies of Degradable Poly(Aspartic Acid) Derivatives and Hydroxyl-Rich Polycations for Effective Delivery of Versatile Tumor-Suppressive ncRNAs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1703152. [PMID: 29280338 DOI: 10.1002/smll.201703152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/06/2017] [Indexed: 06/07/2023]
Abstract
The delivery of tumor-suppressive noncoding RNAs (ncRNAs) including short ncRNAs (i.e., miRNAs) and long ncRNAs (lncRNAs) is put forward to treat tumors. In this work, novel rodlike supramolecular nanoassemblies (CNC @CB[8] @ PGEA) of degradable poly(aspartic acid) (PAsp) derivatives-grafted cellulose nanocrystals (CNCs) and hydroxyl-rich polycations (ethanolamine-functionalized poly(glycidyl methacrylate), PGEA) are proposed via typical cucurbit[8]uril (CB[8])-based host-guest interactions for delivery of different ncRNAs to treat hepatocellular carcinoma (HCC). Spindly CNCs, one kind of natural polysaccharide nanoparticles, possess good biocompatibility and unique physico-chemical properties. PGEA with abundant hydroxyl groups is one promising gene carrier with low cytotoxicity. PAsp can benefit the disassembly and degradability of nanoassemblies within cells. CNC @ CB[8]@PGEA combines the different unique properties of CNC, PGEA, and PAsp. CNC @ CB[8] @ PGEA effectively complexes the expression constructs of miR-101 (plasmid pc3.0-miR-101) and lncRNA MEG3 (plasmid pc3.0-MEG3). CNC @ CB[8] @ PGEA produces much better transfection performances than PGEA-containing assembly units. In addition, the codelivery system of CNC @ CB[8] @ PGEA/(pc3.0-MEG3+pc3.0-miR-101) nanocomplexes demonstrates better efficacy in suppressing HCC than CNC @ CB[8] @ PGEA/pc3.0-MEG3 or CNC @ CB[8] @ PGEA/pc3.0-miR-101 nanocomplexes alone. Such rodlike supramolecular nanoassemblies will provide a promising means to produce efficient delivery vectors of versatile tumor-suppressive nucleic acids.
Collapse
Affiliation(s)
- Hai-Qing Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, Beijing, 100029, China
| | - Wenting Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, Beijing, 100029, China
| | - Rui-Quan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, Beijing, 100029, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, Beijing, 100029, China
| | - Wenjuan Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shangdong, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shangdong, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, Beijing, 100029, China
| |
Collapse
|
12
|
Cai C, Lin J, Lu Y, Zhang Q, Wang L. Polypeptide self-assemblies: nanostructures and bioapplications. Chem Soc Rev 2018; 45:5985-6012. [PMID: 27722321 DOI: 10.1039/c6cs00013d] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polypeptide copolymers can self-assemble into diverse aggregates. The morphology and structure of aggregates can be varied by changing molecular architectures, self-assembling conditions, and introducing secondary components such as polymers and nanoparticles. Polypeptide self-assemblies have gained significant attention because of their potential applications as delivery vehicles for therapeutic payloads and as additives in the biomimetic mineralization of inorganics. This review article provides an overview of recent advances in nanostructures and bioapplications related to polypeptide self-assemblies. We highlight recent contributions to developing strategies for the construction of polypeptide assemblies with increasing complexity and novel functionality that are suitable for bioapplications. The relationship between the structure and properties of the polypeptide aggregates is emphasized. Finally, we briefly outline our perspectives and discuss the challenges in the field.
Collapse
Affiliation(s)
- Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yingqing Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qian Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
13
|
Zhang Y, Jiang Q, Wojnilowicz M, Pan S, Ju Y, Zhang W, Liu J, Zhuo R, Jiang X. Acid-sensitive poly(β-cyclodextrin)-based multifunctional supramolecular gene vector. Polym Chem 2018. [DOI: 10.1039/c7py01847a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multifunctional host–guest supramolecular PCD-acetal-PGEA/Ad-PEG-FA polyplexes showing FA-targeting and acid-triggered intracellular gene release resulted in good transfection efficiency and low cytotoxicity.
Collapse
Affiliation(s)
- Yunti Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | - Qimin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Marcin Wojnilowicz
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Wenjie Zhang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
14
|
Potential therapeutic application of dendrimer/cyclodextrin conjugates with targeting ligands as advanced carriers for gene and oligonucleotide drugs. Ther Deliv 2017; 8:215-232. [PMID: 28222660 DOI: 10.4155/tde-2016-0064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite the recent approval of some gene medicines and nucleic acid drugs, further improvement of delivery techniques for these drugs is strongly required. Several delivery technologies for these drugs have been developed, in other words, viral and two types of nonviral (lipofection and polyfection) vectors. Among the polyfection system, the potential use of various cyclodextrin (CyD) derivatives and CyD-appended polymers as carriers for gene and nucleic acid drugs has been demonstrated. The polyamidoamine dendrimer (G3) conjugates with α-CyD (α-CDE (G3)) have been reported to possess noteworthy properties as DNA and nucleic acid drugs carriers. This review will focus on the attempts to develop such cell-specific drug carriers by preparing polyethylene glycol, galactose, lactose, mannose, fucose and folic acid-appended α-CDEs as tissue and cell-selective carriers of gene and nucleic acid drugs.
Collapse
|
15
|
Wang Y, Qin F, Lu M, Gao L, Yao X. The screening and evaluating of chitosan/β-cyclodextrin nanoparticles for effective delivery mitoxantrone hydrochloride. POLYMER SCIENCE SERIES A 2017. [DOI: 10.1134/s0965545x17030191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Zhou P, Zhou F, Liu B, Zhao Y, Yuan X. Functional electrospun fibrous scaffolds with dextran-g-poly(l-lysine)-VAPG/microRNA-145 to specially modulate vascular SMCs. J Mater Chem B 2017; 5:9312-9325. [DOI: 10.1039/c7tb01755c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Functional electrospun membranes loaded with Dex-g-PLL-VAPG/miR-145 complexes exhibit the excellent ability to modulate SMC phenotype and proliferation locally.
Collapse
Affiliation(s)
- Peiqiong Zhou
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Fang Zhou
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Bo Liu
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Yunhui Zhao
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| |
Collapse
|
17
|
Chen X, Qiu YK, Owh C, Loh XJ, Wu YL. Supramolecular cyclodextrin nanocarriers for chemo- and gene therapy towards the effective treatment of drug resistant cancers. NANOSCALE 2016; 8:18876-18881. [PMID: 27819368 DOI: 10.1039/c6nr08055c] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A tumor active targeting β-cyclodextrin based nanocarrier β-NC-OEI-SS-FA was designed by the modification of star shaped cationic derivatives β-NC-OEI with folic acid through a disulfide bond, to co-deliver chemotherapeutic paclitaxel and the Nur77 gene for overcoming Bcl-2 mediated non-pump resistance by an "enemy to friend" strategy for potential drug resistant cancer therapy.
Collapse
Affiliation(s)
- Xiaohong Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, P. R. China.
| | | | | | | | | |
Collapse
|
18
|
Mejia-Ariza R, Graña-Suárez L, Verboom W, Huskens J. Cyclodextrin-based supramolecular nanoparticles for biomedical applications. J Mater Chem B 2016; 5:36-52. [PMID: 32263433 DOI: 10.1039/c6tb02776h] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Supramolecular host-guest interactions are ideal for engineering supramolecular nanoparticles (SNPs), because their modular character offers the possibility of using the same basic SNPs made of very similar building blocks in a variety of applications. The most widely used host is cyclodextrin (CD), therefore, this review will focus on SNPs involving CD as the host entity. In the first part, particle formation and size control are described, and the forces that induce the assembly between the different components and, therefore, result in the formation of stable and controllable nanoparticles. In the second part, the use of CD-based SNPs for diagnostics and therapeutics is described. Here, the emphasis is on how the therapeutic agent/imaging component is included in the system and how it is released at the target site. CD-based SNPs provide great possibilities for the formulation of nanoparticles for biomedical applications because of their high flexibility, stability, modular character, and biocompatibility.
Collapse
Affiliation(s)
- Raquel Mejia-Ariza
- University of Twente, MESA+, Molecular Nanofabrication, P. O. Box 217, 7500 AE, Enschede, Netherlands.
| | | | | | | |
Collapse
|
19
|
Liu J, Xu L, Jin Y, Qi C, Li Q, Zhang Y, Jiang X, Wang G, Wang Z, Wang L. Cell-Targeting Cationic Gene Delivery System Based on a Modular Design Rationale. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14200-14210. [PMID: 27191222 DOI: 10.1021/acsami.6b04462] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
En route to target cells, a gene carrier faces multiple extra- and intracellular hurdles that would affect delivery efficacy. Although diverse strategies have been proposed to functionalize gene carriers for individually overcoming these barriers, it is challenging to generate a single multifunctional gene carrier capable of surmounting all these barriers. Aiming at this challenge, we have developed a supramolecular modular approach to fabricate a multifunctional cationic gene delivery system. It consists of two prefunctionalized modules: (1) a host module: a polymer (PCD-SS-PDMAEMA) composed of poly(β-cyclodextrin) backbone and disulfide-linked PDMAEMA arms, expectedly acting to compact DNA and release DNA upon cleavage of disulfide linkers in reductive microenvironment; and (2) a guest module: adamantyl and folate terminated PEG (Ad-PEG-FA), expectedly functioning to reduce nonspecific interactions, improve biocompatibility, and provide folate-mediated cellular targeting specificity. Through the host-guest interaction between β-cyclodextrin units of the "host" module and adamantyl groups of the "guest" module, the PCD-SS-PDMAEMA-1 (host) and Ad-PEG-FA (guest) self-assemble forming a supramolecular pseudocopolymer (PCD-SS-PDMAEMA-1/PEG-FA). Our comprehensive analyses demonstrate that the functions preassigned to the two building modules are well realized. The gene carrier effectively compacts DNA into stable nanosized polyplexes resistant to enzymatic digestion, triggers DNA release in reducing environment, possesses significantly improved hemocompatibility, and specifically targets folate-receptor positive cells. Most importantly, endowed with these predesigned functions, the PCD-SS-PDMAEMA-1/PEG-FA supramolecular gene carrier exhibits excellent transfection efficacy for both pDNA and siRNA. Thus, this work represents a proof-of-concept example showing the efficiency and convenience of an adaptable, modular approach for conferring multiple functions to a single supramolecular gene carrier toward effective in vivo delivery of therapeutic nucleic acids.
Collapse
Affiliation(s)
- Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Luming Xu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Yang Jin
- Department of Respiration, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei 430022, China
| | - Chao Qi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Qilin Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Yunti Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei 430022, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei 430022, China
| |
Collapse
|
20
|
Nie JJ, Zhao W, Hu H, Yu B, Xu FJ. Controllable Heparin-Based Comb Copolymers and Their Self-assembled Nanoparticles for Gene Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8376-8385. [PMID: 26947134 DOI: 10.1021/acsami.6b00649] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Polysaccharide-based copolymers have attracted much attention due to their effective performances. Heparin, as a kind of polysaccharide with high negative charge densities, has attracted much attention in biomedical fields. In this work, we report a flexible way to adjust the solubility of heparin from water to oil via the introduction of tetrabutylammonium groups for further functionalization. A range of heparin-based comb copolymers with poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMEMA), poly(dimethylaminoethyl methacrylate) (PDMAEMA), or PPEGMEMA-b-PDMAEMA side chains were readily synthesized in a MeOH/dimethylsulfoxide mixture via atom-transfer radical polymerization. The heparin-based polymer nanoparticles involving cationic PDMAEMA were produced due to the electrostatic interaction between the negatively charged heparin backbone and PDMAEMA grafts. Then the pDNA condensation ability, cytotoxicity, and gene transfection efficiency of the nanoparticles were characterized in comparison with the reported gene vectors. The nanoparticles were proved to be effective gene vectors with low cytotoxicity and high transfection efficiency. This study demonstrates that by adjusting the solubility of heparin, polymer graft functionalization of heparin can be readily realized for wider applications.
Collapse
Affiliation(s)
- Jing-Jun Nie
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education , Beijing 100029, China
| | - Weiyi Zhao
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education , Beijing 100029, China
| | - Hao Hu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education , Beijing 100029, China
| | - Bingran Yu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education , Beijing 100029, China
| | - Fu-Jian Xu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education , Beijing 100029, China
| |
Collapse
|
21
|
Liu J, Hennink WE, van Steenbergen MJ, Zhuo R, Jiang X. Versatile Supramolecular Gene Vector Based on Host–Guest Interaction. Bioconjug Chem 2016; 27:1143-52. [DOI: 10.1021/acs.bioconjchem.6b00094] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jia Liu
- Key
Laboratory of Biomedical Polymers of Ministry of Education and Department
of Chemistry, Wuhan University, Wuhan 430072, P. R. China
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Research
Center for Tissue Engineering and Regenerative Medicine, Union Hospital,
Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mies J. van Steenbergen
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Renxi Zhuo
- Key
Laboratory of Biomedical Polymers of Ministry of Education and Department
of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xulin Jiang
- Key
Laboratory of Biomedical Polymers of Ministry of Education and Department
of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
22
|
Preparation and properties of pH-responsive, self-assembled colloidal nanoparticles from guanidine-containing polypeptide and chitosan for antibiotic delivery. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.01.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Cationic β-Cyclodextrin–Chitosan Conjugates as Potential Carrier for pmCherry-C1 Gene Delivery. Mol Biotechnol 2016; 58:287-98. [DOI: 10.1007/s12033-016-9927-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Preparation of Inclusion Complex Between Nifedipine and Ethylenediamine-β-Cyclodextrin as Nanocarrier Agent. Pharm Chem J 2015. [DOI: 10.1007/s11094-015-1338-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|