1
|
Cai S, Guo X, Yang H, Zhao T, Li Y, Deng N, Gao Z, Meng Q, Li X, Wang S. Synthesis and antitumor effects of novel betulinic acid derivatives bearing electrophilic moieties. Bioorg Med Chem 2025; 119:118062. [PMID: 39756343 DOI: 10.1016/j.bmc.2025.118062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/21/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
Betulinic acid (BA) is a kind of naturally occurring lupane pentacyclic triterpenoid, possessing various biological activities including antiviral, anti-inflammatory and antitumor activity. Covalent inhibitors, characterized by electrophilic warheads that form covalent bonds with specific amino acid residues of target proteins, have garnered enormous attention in anticancer agent discovery over the past decade owing to their exceptional selectivity and efficacy. In this study, BA was structurally modified with electrophilic groups, and 23 derivatives of BA were synthesized. Most of these BA derivatives exhibited improved antiproliferative activity against MCF-7, HeLa, MDA-MB-231 cells in MTT assay, especially the compound 15b (IC50 = 1.09 μM against MCF-7 cells). Further study demonstrated that 15b inhibited the migration and clone formation of MCF-7 cells, induced the apoptosis, autophagy and cycle arrest at G2/M phase in MCF-7 cells, and promoted the production of intracellular reactive oxygen species (ROS). Western blot analysis showed that 15b inhibited AKT/mTOR signaling pathway in MCF-7 cells. In addition, 15b reversed the resistance of JIMT-1 cells to trastuzumab, which might be related to the inhibition of AKT/mTOR pathway. Finally, 15b significantly inhibited the growth of tumor in the breast cancer xenograft mouse model with 36 % inhibition rate of tumor growth and without significant reduction of mouse body weight.
Collapse
Affiliation(s)
- Sen Cai
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiuhan Guo
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Haozhe Yang
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tianyu Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yueqing Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Ning Deng
- Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Zhigang Gao
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Qingwei Meng
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Xiaorui Li
- Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China.
| | - Shisheng Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
| |
Collapse
|
2
|
Şenol H, Şahin RB, Mercümek B, Kapucu HB, Hacıosmanoğlu E, Dinç HÖ, Yüksel Mayda P. Synthesis of ursolic acid arylidene-hydrazide hybrid compounds and investigation of their cytotoxic and antimicrobial effects. Nat Prod Res 2023; 37:2500-2507. [PMID: 35275500 DOI: 10.1080/14786419.2022.2051170] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/24/2022]
Abstract
In this study, 13 new hybrid compounds (7a-m) were synthesised starting from ursolic acid, and their cytotoxic activities were investigated on the BEAS-2B and A549 cell lines. In addition, the synthesised compounds were tested against Staphylococcus aureus, Escherichia coli, and Candida albicans to determine their anti-microbial properties. The hybrid compounds that exhibited the lowest cytotoxicity against the BEAS-2B were 7k, 7b, and 7g. The cytotoxicity of the compounds against A549 was evaluated, the IC50 value of 7k, 7b, and 7g are found as 0.15 µM, 0.31 µM, and 0.26 µM, respectively. The results showed that the selectivity of 7k was 7 times higher than doxorubicin against the A549 cells. According to the antimicrobial activity studies 7c is found as the most effective compound against S. aureus. Almost all compounds showed a similar inhibition potential against E. coli and C. albicans.
Collapse
Affiliation(s)
- Halil Şenol
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bezmialem Vakif University, Turkey
| | | | | | - Halil Burak Kapucu
- Faculty of Medicine, Department of Biophysics, Bezmialem Vakif University, Turkey
| | - Ebru Hacıosmanoğlu
- Faculty of Medicine, Department of Biophysics, Bezmialem Vakif University, Turkey
| | - Harika Öykü Dinç
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Bezmialem Vakif University, Turkey
| | - Pelin Yüksel Mayda
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Bezmialem Vakif University, Turkey
| |
Collapse
|
3
|
Synthesis of oleanolic acid hydrazide-hydrazone hybrid derivatives and investigation of their cytotoxic effects on A549 human lung cancer cells. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
4
|
Khusnutdinova E, Petrova A, Zileeva Z, Kuzmina U, Zainullina L, Vakhitova Y, Babkov D, Kazakova O. Novel A-Ring Chalcone Derivatives of Oleanolic and Ursolic Amides with Anti-Proliferative Effect Mediated through ROS-Triggered Apoptosis. Int J Mol Sci 2021; 22:9796. [PMID: 34575964 PMCID: PMC8465963 DOI: 10.3390/ijms22189796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
A series of A-ring modified oleanolic and ursolic acid derivatives including C28 amides (3-oxo-C2-nicotinoylidene/furfurylidene, 3β-hydroxy-C2-nicotinoylidene, 3β-nicotinoyloxy-, 2-cyano-3,4-seco-4(23)-ene, indolo-, lactame and azepane) were synthesized and screened for their cytotoxic activity against the NCI-60 cancer cell line panel. The results of the first assay of thirty-two tested compounds showed that eleven derivatives exhibited cytotoxicity against cancer cells, and six of them were selected for complete dose-response studies. A systematic study of local SARs has been carried out by comparative analysis of potency distributions and similarity relationships among the synthesized compounds using network-like similarity graphs. Among the oleanane type triterpenoids, C2-[4-pyridinylidene]-oleanonic C28-morpholinyl amide exhibited sub-micromolar potencies against 15 different tumor cell lines and revealed particular selectivity for non-small cell lung cancer (HOP-92) with a GI50 value of 0.0347 μM. On the other hand, superior results were observed for C2-[3-pyridinylidene]-ursonic N-methyl-piperazinyl amide 29, which exhibited a broad-spectrum inhibition activity with GI50 < 1 μM against 33 tumor cell lines and <2 μM against all 60 cell lines. This compound has been further evaluated for cell cycle analysis to decipher the mechanism of action. The data indicate that compound 29 could exhibit both cytostatic and cytotoxic activity, depending on the cell line evaluated. The cytostatic activity appears to be determined by induction of the cell cycle arrest at the S (MCF-7, SH-SY5Y cells) or G0/G1 phases (A549 cells), whereas cytotoxicity of the compound against normal cells is nonspecific and arises from apoptosis without significant alterations in cell cycle distribution (HEK293 cells). Our results suggest that the antiproliferative effect of compound 29 is mediated through ROS-triggered apoptosis that involves mitochondrial membrane potential depolarization and caspase activation.
Collapse
Affiliation(s)
- Elmira Khusnutdinova
- Ufa Institute of Chemistry UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (E.K.); (A.P.)
| | - Anastasiya Petrova
- Ufa Institute of Chemistry UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (E.K.); (A.P.)
| | - Zulfia Zileeva
- Institute of Biochemistry and Genetics UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (Z.Z.); (U.K.); (L.Z.); (Y.V.)
| | - Ulyana Kuzmina
- Institute of Biochemistry and Genetics UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (Z.Z.); (U.K.); (L.Z.); (Y.V.)
| | - Liana Zainullina
- Institute of Biochemistry and Genetics UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (Z.Z.); (U.K.); (L.Z.); (Y.V.)
| | - Yulia Vakhitova
- Institute of Biochemistry and Genetics UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (Z.Z.); (U.K.); (L.Z.); (Y.V.)
| | - Denis Babkov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 39 Novorossiyskaya St., 400087 Volgograd, Russia;
| | - Oxana Kazakova
- Ufa Institute of Chemistry UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (E.K.); (A.P.)
| |
Collapse
|
5
|
Heise N, Siewert B, Ströhl D, Hoenke S, Kazakova O, Csuk R. A simple but unusual rearrangement of an oleanane to a taraxerane-28,14 β -olide. Steroids 2021; 172:108853. [PMID: 33930390 DOI: 10.1016/j.steroids.2021.108853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022]
Abstract
Reaction of 3-O-acetyl-oleanolic acid (3) with formic acid/hydrogen peroxide at 100 °C for several hours provides an extraordinary but simple pathway to a taraxeran-28,14 β -olide type triterpenoid while the same reaction at 0 °C occurred without re-arrangement of the carbon skeleton, and an oleanane-28,13 β -olide was obtained instead. The products from these reactions were subjected to a cytotoxicity screening employing several human tumor cell lines showing the latter compound not cytotoxic while the former was cytotoxic especially for MCF-7 (breast adenocarcinoma), and FaDu (hypopharyngeal carcinoma) cells. The highest cytotoxicity, however, was observed for 3 β, 12α, 13 β -trihydroxy-oleanan-28-oic acid (6) holding with EC50 = 4.2 μM for MCF-7 tumor cells.
Collapse
Affiliation(s)
- Niels Heise
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Bianka Siewert
- University of Innsbruck, Institute of Pharmacy/Pharmacognosy, Center for Chemistry and Biomedicine, Innrain 80 - 82, A-6020 Innsbruck, Austria
| | - Dieter Ströhl
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Sophie Hoenke
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Oxana Kazakova
- Ufa Institute of Chemistry UFRC RAS, pr. Octyabrya 71, 450054 Ufa, Russian Federation
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
6
|
Markov AV, Sen’kova AV, Salomatina OV, Logashenko EB, Korchagina DV, Salakhutdinov NF, Zenkova MA. Trioxolone Methyl, a Novel Cyano Enone-Bearing 18βH-Glycyrrhetinic Acid Derivative, Ameliorates Dextran Sulphate Sodium-Induced Colitis in Mice. Molecules 2020; 25:molecules25102406. [PMID: 32455822 PMCID: PMC7287650 DOI: 10.3390/molecules25102406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
Semi-synthetic triterpenoids, bearing cyano enone functionality in ring A, are considered to be novel promising therapeutic agents with complex inhibitory effects on tissue damage, inflammation and tumor growth. Previously, we showed that the cyano enone-containing 18βH-glycyrrhetinic acid derivative soloxolone methyl (SM) effectively suppressed the inflammatory response of macrophages in vitro and the development of influenza A-induced pneumonia and phlogogen-stimulated paw edema in vivo. In this work, we reported the synthesis of a novel 18βH-glycyrrhetinic acid derivative trioxolone methyl (TM), bearing a 2-cyano-3-oxo-1(2)-en moiety in ring A and a 12,19-dioxo-9(11),13(18)-dien moiety in rings C, D, and E. TM exhibited a high inhibitory effect on nitric oxide (II) production by lipopolysaccharide-stimulated J774 macrophages in vitro and dextran sulfate sodium (DSS)-induced colitis in mice, displaying higher anti-inflammatory activity in comparison with SM. TM effectively suppressed the DSS-induced epithelial damage and inflammatory infiltration of colon tissue, the hyperproduction of colonic neutral mucin and TNFα and increased glutathione synthesis. Our in silico analysis showed that Akt1, STAT3 and dopamine receptor D2 can be considered as mediators of the anti-colitic activity of TM. Our findings provided valuable information for a better understanding of the anti-inflammatory activity of cyano enone-bearing triterpenoids and revealed TM as a promising anti-inflammatory candidate.
Collapse
Affiliation(s)
- Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev ave., 8, 630090 Novosibirsk, Russia; (A.V.S.); (O.V.S.); (E.B.L.); (M.A.Z.)
- Correspondence: ; Tel.: +7-383-363-51-61
| | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev ave., 8, 630090 Novosibirsk, Russia; (A.V.S.); (O.V.S.); (E.B.L.); (M.A.Z.)
| | - Oksana V. Salomatina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev ave., 8, 630090 Novosibirsk, Russia; (A.V.S.); (O.V.S.); (E.B.L.); (M.A.Z.)
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev ave., 9, 630090 Novosibirsk, Russia; (D.V.K.); (N.F.S.)
| | - Evgeniya B. Logashenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev ave., 8, 630090 Novosibirsk, Russia; (A.V.S.); (O.V.S.); (E.B.L.); (M.A.Z.)
| | - Dina V. Korchagina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev ave., 9, 630090 Novosibirsk, Russia; (D.V.K.); (N.F.S.)
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev ave., 9, 630090 Novosibirsk, Russia; (D.V.K.); (N.F.S.)
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev ave., 8, 630090 Novosibirsk, Russia; (A.V.S.); (O.V.S.); (E.B.L.); (M.A.Z.)
| |
Collapse
|
7
|
Salvador JA, Leal AS, Valdeira AS, Gonçalves BM, Alho DP, Figueiredo SA, Silvestre SM, Mendes VI. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur J Med Chem 2017; 142:95-130. [DOI: 10.1016/j.ejmech.2017.07.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022]
|
8
|
Khusnutdinova EF, Petrova АV, Poptsov АI, Lobov АN, Smirnova IE, Kukovinets ОS. Synthesis of new cyanoethyl derivatives from 3-oxotriterpenoids. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428017080073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
McGovern-Gooch KR, Mahajani NS, Garagozzo A, Schramm AJ, Hannah LG, Sieburg MA, Chisholm JD, Hougland JL. Synthetic Triterpenoid Inhibition of Human Ghrelin O-Acyltransferase: The Involvement of a Functionally Required Cysteine Provides Mechanistic Insight into Ghrelin Acylation. Biochemistry 2017; 56:919-931. [PMID: 28134508 DOI: 10.1021/acs.biochem.6b01008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The peptide hormone ghrelin plays a key role in regulating hunger and energy balance within the body. Ghrelin signaling presents a promising and unexploited target for development of small molecule therapeutics for treatment of obesity, diabetes, and other health conditions. Inhibition of ghrelin O-acyltransferase (GOAT), which catalyzes an essential octanoylation step in ghrelin maturation, offers a potential avenue for controlling ghrelin signaling. Through screening a small molecule library, we have identified a class of synthetic triterpenoids that efficiently inhibit ghrelin acylation by the human isoform of GOAT (hGOAT). These compounds function as covalent reversible inhibitors of hGOAT, providing the first evidence of the involvement of a nucleophilic cysteine residue in substrate acylation by a MBOAT family acyltransferase. Surprisingly, the mouse form of GOAT does not exhibit susceptibility to cysteine-modifying electrophiles, revealing an important distinction in the activity and behavior between these closely related GOAT isoforms. This study establishes these compounds as potent small molecule inhibitors of ghrelin acylation and provides a foundation for the development of novel hGOAT inhibitors as therapeutics targeting diabetes and obesity.
Collapse
Affiliation(s)
| | - Nivedita S Mahajani
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - Ariana Garagozzo
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - Anthony J Schramm
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - Lauren G Hannah
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - Michelle A Sieburg
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - John D Chisholm
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - James L Hougland
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| |
Collapse
|
10
|
Ligustrazine-Oleanolic Acid Glycine Derivative, G-TOA, Selectively Inhibited the Proliferation and Induced Apoptosis of Activated HSC-T6 Cells. Molecules 2016; 21:molecules21111599. [PMID: 27886086 PMCID: PMC6273822 DOI: 10.3390/molecules21111599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022] Open
Abstract
Hepatic fibrosis is a naturally occurring wound-healing reaction, with an imbalance of extracellular matrix (ECM) during tissue repair response, which can further deteriorate to hepatocellular carcinoma without timely treatment. Inhibiting activated hepatic stellate cell (HSC) proliferation and inducing apoptosis are the main methods for the treatment of liver fibrosis. In our previous study, we found that the TOA-glycine derivative (G-TOA) had exhibited more significant inhibitory activity against HepG2 cells and better hydrophilicity than TOA, ligustrazine (TMP), and oleanolic acid (OA). However, inhibiting activated HSC proliferation and inducing apoptosis by G-TOA had not been reported. In this paper, the selective cytotoxicity of G-TOA was evaluated on HSC-T6 cells and L02 cells, and apoptosis mechanisms were explored. It was found that G-TOA could selectively inhibit the proliferation of activated HSC-T6 cells, induce morphological changes, early apoptosis, and mitochondrial membrane potential depolarization, increase intracellular free calcium levels, downregulate the expression of NF-κB/p65 and COX-2 protein, and decrease the ratio of Bcl-2/Bax, thereby inducing HSC-T6 cell apoptosis. Thence, G-TOA might be a potential antifibrosis agent for the therapy of hepatic fibrosis, provided that it exerts anti-fibrosis effects on activated HSC-T6 cells.
Collapse
|
11
|
Kalyanavenkataraman S, Nanjan P, Banerji A, Nair BG, Kumar GB. Discovery of arjunolic acid as a novel non-zinc binding carbonic anhydrase II inhibitor. Bioorg Chem 2016; 66:72-9. [PMID: 27038848 DOI: 10.1016/j.bioorg.2016.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/04/2016] [Accepted: 03/23/2016] [Indexed: 11/29/2022]
Abstract
Elevated levels of carbonic anhydrase II (CA II) have been shown to be associated with cardiac hypertrophy and heart failure. Although arjunolic acid (AA) has a diverse range of therapeutic applications including cardio-protection, there have been no reports on the effect of AA on CA II. The present study describes for the first time, the novel zinc independent inhibition of CA II by AA. The molecular docking studies of AA indicated that the hydroxyl group at C2 of the A-ring, which hydrogen bonds with the catalytic site residues (His64, Asn62 and Asn67), along with the gem-dimethyl group at C20 of the E-ring, greatly influences the inhibitory activity, independent of the catalytic zinc, unlike the inhibition observed with most CA II inhibitors. Among the triterpenoids tested viz. arjunolic acid, arjunic acid, asiatic acid, oleanolic acid and ursolic acid, AA was the most potent in inhibiting CA II in vitro with an IC50 of 9μM. It was interesting to note, that in spite of exhibiting very little differences in their structures, these triterpenoids exhibited vast differences in their inhibitory activities, with IC50 values ranging from 9μM to as high as 333μM. Furthermore, AA also inhibited the cytosolic activity of CA in H9c2 cardiomyocytes, as reflected by the decrease in acidification of the intracellular pH (pHi). The decreased acidification reduced the intracellular calcium levels, which further prevented the mitochondrial membrane depolarization. Thus, these studies provide a better understanding for establishing the novel molecular mechanism involved in CA II inhibition by the non-zinc binding inhibitor AA.
Collapse
Affiliation(s)
| | - Pandurangan Nanjan
- Amrita School of Biotechnology, Amrita University, Amritapuri Campus, Clappana P.O., Kollam 690 525, Kerala, India
| | - Asoke Banerji
- Amrita School of Biotechnology, Amrita University, Amritapuri Campus, Clappana P.O., Kollam 690 525, Kerala, India
| | - Bipin G Nair
- Amrita School of Biotechnology, Amrita University, Amritapuri Campus, Clappana P.O., Kollam 690 525, Kerala, India
| | - Geetha B Kumar
- Amrita School of Biotechnology, Amrita University, Amritapuri Campus, Clappana P.O., Kollam 690 525, Kerala, India.
| |
Collapse
|