1
|
Manna AK, Doi M, Matsuo K, Sakurai H, Subrahmanyam C, Sato K, Narumi T, Mase N. Fine bubble technology for the green synthesis of fairy chemicals. Org Biomol Chem 2024; 22:3396-3404. [PMID: 38576351 DOI: 10.1039/d4ob00237g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Fairy chemicals (FCs), such as 2-azahypoxanthine (AHX), are a potential new class of plant hormones that are naturally present in plants and produced via a novel purine metabolic pathway. FCs support plant resilience against various stresses and regulate plant growth. In this study, we developed a four-step method for synthesising AHX from 2-cyanoacetamide, achieving a good yield. Oxime was obtained from 2-cyanoacetamide via the oximation reaction. Cascade-type one-pot selective Pt/C-catalysed reduction of oxime, followed by a coupling reaction with formamidine acetate, yielded intermediate 5-amino-1H-imidazole-4-carboxamide (AICA). For the synthesis of AICA from oxime, we used modern fine bubble technology, affording AICA in 69% yield. Subsequently, we synthesised 4-diazo-4H-imidazole-5-carboxamide (DICA) from AICA via the diazotisation reaction. Notably, the synthesis of DICA from AICA was achieved, and the stability of previously known less stable DICA in the solid state was confirmed. Finally, PhI(OAc)2 (0.5 mol%) catalysed the intramolecular cyclisation of DICA in the green solvent water to yield AHX (overall yield of 47%). This study's innovative techniques and substantial discoveries highlight its potential influence and significance in FC science, thereby establishing a new standard for subsequent research.
Collapse
Affiliation(s)
- Arun Kumar Manna
- Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561, Shizuoka, Japan.
| | - Mizuki Doi
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1, Johoku, Hamamatsu 432-8561, Shizuoka, Japan
| | - Keiya Matsuo
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1, Johoku, Hamamatsu 432-8561, Shizuoka, Japan
| | - Hiroto Sakurai
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1, Johoku, Hamamatsu 432-8561, Shizuoka, Japan
| | - Ch Subrahmanyam
- Department of Chemistry, Indian Institute of Technology Hyderabad, 502285, Sangareddy, Telangana, India
| | - Kohei Sato
- Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561, Shizuoka, Japan.
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1, Johoku, Hamamatsu 432-8561, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561, Shizuoka, Japan
| | - Tetsuo Narumi
- Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561, Shizuoka, Japan.
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1, Johoku, Hamamatsu 432-8561, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561, Shizuoka, Japan
| | - Nobuyuki Mase
- Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561, Shizuoka, Japan.
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1, Johoku, Hamamatsu 432-8561, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561, Shizuoka, Japan
| |
Collapse
|
2
|
Kotajima M, Choi JH, Suzuki H, Suzuki T, Wu J, Hirai H, Nelson DC, Ouchi H, Inai M, Dohra H, Kawagishi H. Identification of Biosynthetic and Metabolic Genes of 2-Azahypoxanthine in Lepista sordida Based on Transcriptomic Analysis. JOURNAL OF NATURAL PRODUCTS 2023; 86:710-718. [PMID: 36802627 DOI: 10.1021/acs.jnatprod.2c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
2-Azahypoxanthine was isolated from the fairy ring-forming fungus Lepista sordida as a fairy ring-inducing compound. 2-Azahypoxanthine has an unprecedented 1,2,3-triazine moiety, and its biosynthetic pathway is unknown. The biosynthetic genes for 2-azahypoxanthine formation in L. sordida were predicted by a differential gene expression analysis using MiSeq. The results revealed that several genes in the purine and histidine metabolic pathways and the arginine biosynthetic pathway are involved in the biosynthesis of 2-azahypoxanthine. Furthermore, nitric oxide (NO) was produced by recombinant NO synthase 5 (rNOS5), suggesting that NOS5 can be the enzyme involved in the formation of 1,2,3-triazine. The gene encoding hypoxanthine-guanine phosphoribosyltransferase (HGPRT), one of the major phosphoribosyltransferases of purine metabolism, increased when 2-azahypoxanthine content was the highest. Therefore, we hypothesized that HGPRT might catalyze a reversible reaction between 2-azahypoxanthine and 2-azahypoxanthine-ribonucleotide. We proved the endogenous existence of 2-azahypoxanthine-ribonucleotide in L. sordida mycelia by LC-MS/MS for the first time. Furthermore, it was shown that recombinant HGPRT catalyzed reversible interconversion between 2-azahypoxanthine and 2-azahypoxanthine-ribonucleotide. These findings demonstrate that HGPRT can be involved in the biosynthesis of 2-azahypoxanthine via 2-azahypoxanthine-ribonucleotide generated by NOS5.
Collapse
Affiliation(s)
| | | | | | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, 350 mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | | | | | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Hitoshi Ouchi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Makoto Inai
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | | | | |
Collapse
|
3
|
Takemura H, Choi JH, Fushimi K, Narikawa R, Wu J, Kondo M, Nelson DC, Suzuki T, Ouchi H, Inai M, Hirai H, Kawagishi H. Role of hypoxanthine-guanine phosphoribosyltransferase in the metabolism of fairy chemicals in rice. Org Biomol Chem 2023; 21:2556-2561. [PMID: 36880328 DOI: 10.1039/d3ob00026e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Fairy chemicals (FCs), 2-azahypoxanthine (AHX), imidazole-4-carboxamide (ICA), and 2-aza-8-oxohypoxanthine (AOH), are molecules with many diverse functions in plants. The defined biosynthetic pathway for FCs is a novel purine metabolism in which they are biosynthesized from 5-aminoimidazole-4-carboxamide. Here, we show that one of the purine salvage enzymes, hypoxanthine-guanine phosphoribosyltransferase (HGPRT), recognizes AHX and AOH as substrates. Two novel compounds, AOH ribonucleotide and its ribonucleoside which are the derivatives of AOH, were enzymatically synthesized. The structures were determined by mass spectrometry, 1D and 2D NMR spectroscopy, and X-ray single-crystal diffraction analysis. This report demonstrates the function of HGPRT and the existence of novel purine metabolism associated with the biosynthesis of FCs in rice.
Collapse
Affiliation(s)
- Hirohide Takemura
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Jae-Hoon Choi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Keiji Fushimi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Rei Narikawa
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jing Wu
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Mitsuru Kondo
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, 350 Minemachi, Tochigi 321-8505, Japan
| | - Hitoshi Ouchi
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Makoto Inai
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hirofumi Hirai
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
4
|
Ito A, Choi JH, Yokoyama-Maruyama W, Kotajima M, Wu J, Suzuki T, Terashima Y, Suzuki H, Hirai H, Nelson DC, Tsunematsu Y, Watanabe K, Asakawa T, Ouchi H, Inai M, Dohra H, Kawagishi H. 1,2,3-Triazine formation mechanism of the fairy chemical 2-azahypoxanthine in the fairy ring-forming fungus Lepista sordida. Org Biomol Chem 2022; 20:2636-2642. [PMID: 35293930 DOI: 10.1039/d2ob00328g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Azahypoxanthine (AHX) was first isolated from the culture broth of the fungus Lepista sordida as a fairy ring-inducing compound. It has since been found that a large number of plants and mushrooms produce AHX endogenously and that AHX has beneficial effects on plant growth. The AHX molecule has an unusual, nitrogen-rich 1,2,3-triazine moiety of unknown biosynthetic origin. Here, we establish the biosynthetic pathway for AHX formation in L. sordida. Our results reveal that the key nitrogen sources that are responsible for the 1,2,3-triazine formation are reactive nitrogen species (RNS), which are derived from nitric oxide (NO) produced by NO synthase (NOS). Furthermore, RNS are also involved in the biochemical conversion of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl 5'-monophosphate (AICAR) to AHX-ribotide (AHXR), suggesting that a novel biosynthetic route that produces AHX exists in the fungus. These findings demonstrate a physiological role for NOS in AHX biosynthesis as well as in biosynthesis of other natural products containing a nitrogen-nitrogen bond.
Collapse
Affiliation(s)
- Akinobu Ito
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan. .,Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jae-Hoon Choi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan. .,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Waki Yokoyama-Maruyama
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Mihaya Kotajima
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Jing Wu
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, 350 Minemachi, Tochigi 321-8505, Japan
| | - Yurika Terashima
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Hyogo Suzuki
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Hirofumi Hirai
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan. .,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tomohiro Asakawa
- Marine Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka City, Kanagawa 259-1292, Japan
| | - Hitoshi Ouchi
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Makoto Inai
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hideo Dohra
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan. .,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
5
|
Inoue C, Yasuma T, D’Alessandro-Gabazza CN, Toda M, Fridman D’Alessandro V, Inoue R, Fujimoto H, Kobori H, Tharavecharak S, Takeshita A, Nishihama K, Okano Y, Wu J, Kobayashi T, Yano Y, Kawagishi H, Gabazza EC. The Fairy Chemical Imidazole-4-Carboxamide Inhibits the Expression of Axl, PD-L1, and PD-L2 and Improves Response to Cisplatin in Melanoma. Cells 2022; 11:cells11030374. [PMID: 35159184 PMCID: PMC8834508 DOI: 10.3390/cells11030374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
The leading cause of death worldwide is cancer. Many reports have proved the beneficial effect of mushrooms in cancer. However, the precise mechanism is not completely clear. In the present study, we focused on the medicinal properties of biomolecules released by fairy ring-forming mushrooms. Fairy chemicals generally stimulate or inhibit the growth of surrounding vegetation. In the present study, we evaluated whether fairy chemicals (2-azahypoxanthine, 2-aza-8-oxohypoxanthine, and imidazole-4-carboxamide) exert anticancer activity by decreasing the expression of Axl and immune checkpoint molecules in melanoma cells. We used B16F10 melanoma cell lines and a melanoma xenograft model in the experiments. Treatment of melanoma xenograft with cisplatin combined with imidazole-4-carboxamide significantly decreased the tumor volume compared to untreated mice or mice treated cisplatin alone. In addition, mice treated with cisplatin and imidazole-4-carboxamide showed increased peritumoral infiltration of T cells compared to mice treated with cisplatin alone. In vitro studies showed that all fairy chemicals, including imidazole-4-carboxamide, inhibit the expression of immune checkpoint molecules and Axl compared to controls. Imidazole-4-carboxamide also significantly blocks the cisplatin-induced upregulation of PD-L1. These observations point to the fairy chemical imidazole-4-carboxamide as a promising coadjuvant therapy with cisplatin in patients with cancer.
Collapse
Affiliation(s)
- Chisa Inoue
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
| | - Taro Yasuma
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Corina N. D’Alessandro-Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Valeria Fridman D’Alessandro
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Ryo Inoue
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (H.F.); (T.K.)
| | - Hajime Kobori
- Iwade—Research Institute of Mycology Co., Ltd., Tsu 514-0012, Japan;
| | - Suphachai Tharavecharak
- Department of Agriculture, Graduate School of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan;
| | - Atsuro Takeshita
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Kota Nishihama
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
| | - Yuko Okano
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Jing Wu
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan; (J.W.); (H.K.)
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (H.F.); (T.K.)
| | - Yutaka Yano
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
| | - Hirokazu Kawagishi
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan; (J.W.); (H.K.)
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
- Correspondence:
| |
Collapse
|
6
|
Leškovskis K, Zaķis JM, Novosjolova I, Turks M. Applications of Purine Ring Opening in the Synthesis of Imidazole, Pyrimidine, and New Purine Derivatives. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kristaps Leškovskis
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry Riga Technical University P. Valdena Str. 3 Riga LV-1048 Latvia
| | - Jānis Miķelis Zaķis
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry Riga Technical University P. Valdena Str. 3 Riga LV-1048 Latvia
| | - Irina Novosjolova
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry Riga Technical University P. Valdena Str. 3 Riga LV-1048 Latvia
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry Riga Technical University P. Valdena Str. 3 Riga LV-1048 Latvia
| |
Collapse
|
7
|
Abstract
In this study, we verified the effects of 2-aza-8-oxohypoxanthine (AOH) on human epidermal cell proliferation by performing DNA microarray analysis. Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, which measures mitochondrial respiration in normal human epidermal keratinocyte (NHEK) cells. Gene expression levels were determined by DNA microarray analysis of 177 genes involved in skin aging and disease. AOH showed a significant increase in cell viability at concentrations between 7.8 and 31.3 μg/mL and a significant decrease at concentrations above 250 μg/mL. DNA microarray analysis showed that AOH significantly increased the gene expression of CLDN1, DSC1, DSG1, and CDH1 (E-cadherin), which are involved in intercellular adhesion and skin barrier functioning. AOH also up-regulated the expression of KLK5, KLK7, and SPIMK5, which are proteases involved in stratum corneum detachment. Furthermore, AOH significantly stimulated the expression of KRT1, KRT10, TGM1, and IVL, which are considered general differentiation indicators, and that of SPRR1B, a cornified envelope component protein. AOH exerted a cell activation effect on human epidermal cells. Since AOH did not cause cytotoxicity, it was considered that the compound had no adverse effects on the skin. In addition, it was found that AOH stimulated the expression levels of genes involved in skin barrier functioning by DNA microarray analysis. Therefore, AOH has the potential for practical use as a cosmetic ingredient. This is the first report of efficacy evaluation tests performed for AOH.
Collapse
|
8
|
Ouchi H, Namiki T, Iwamoto K, Matsuzaki N, Inai M, Kotajima M, Wu J, Choi JH, Kimura Y, Hirai H, Xie X, Kawagishi H, Kan T. S-Adenosylhomocysteine Analogue of a Fairy Chemical, Imidazole-4-carboxamide, as its Metabolite in Rice and Yeast and Synthetic Investigations of Related Compounds. JOURNAL OF NATURAL PRODUCTS 2021; 84:453-458. [PMID: 33480692 DOI: 10.1021/acs.jnatprod.0c01269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
During the course of our investigations of fairy chemicals (FCs), we found S-ICAr-H (8a), as a metabolite of imidazole-4-carboxamide (ICA) in rice and yeast (Saccharomyces cerevisiae). In order to determine its absolute configuration, an efficient synthetic method of 8a was developed. This synthetic strategy was applicable to the preparation of analogues of 8a that might be biologically very important, such as S-ICAr-M (9), S-AICAr-H (10), and S-AICAr-M (11).
Collapse
Affiliation(s)
- Hitoshi Ouchi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takuya Namiki
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kenji Iwamoto
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Nobuo Matsuzaki
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Makoto Inai
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mihaya Kotajima
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jing Wu
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jae-Hoon Choi
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Yoko Kimura
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirofumi Hirai
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, 350 mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Hirokazu Kawagishi
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Toshiyuki Kan
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
9
|
Naguib IA, Abdelaleem EA, Hassan ES, Emam AA. Validated spectral manipulations for determination of an anti-neoplastic drug and its related impurities including its hazardous degradation product. RSC Adv 2021; 11:21332-21342. [PMID: 35478836 PMCID: PMC9034043 DOI: 10.1039/d1ra03238k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
Innovative and specific double dual wavelength, dual ratio subtraction spectrophotometric methods were carried out along with a successive ratio subtraction spectrophotometric method for determination of dacarbazine and its related impurities including toxic and hazardous ones. For determination of dacarbazine by the double dual wavelength method, the absorbance differences between 323 and 350 nm of the zero order absorption spectra of dacarbazine were used. The values of absorbance difference between 267.2 and 286.2 nm of the zero order spectra of 5-amino-imidazole-4 carboxamide were used for its determination by the dual ratio subtraction method. The zero order absorption spectrum of 2-azahypoxanthine at 235 nm was used for its determination after applying the successive ratio subtraction method. ICH guidelines were followed for validation of the developed methods, where linear relationships were obtained in the range of 4–20, 1–16, and 2–20 μg mL−1 for dacarbazine, 5-amino imidazole-4-carboxamide and 2-azahypoxanthine, respectively. Accurate, precise, and specific results were obtained upon applying the proposed methods according to ICH guidelines. Furthermore, the developed methods were successfully applied for determination of dacarbazine in its pharmaceutical formulation. Comparing the results of the developed methods with those of the official USP spectrophotometric method statistically showed no significant difference. The developed methods don't need any sophisticated techniques so they are considered cost effective methods. Moreover, the introduced methods have the advantages of being green where water was used as a solvent. The methods proved to be more economic, fast and simple than other reported HPLC methods. Zero order absorption spectra of 12 μg mL−1 of Dacarbazine (
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
), 5-amino-imidazole-4 carboxamide (
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
), and 2-azahypoxanthine (…) using sterile water as a blank.![]()
Collapse
Affiliation(s)
- Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- Taif University
- Taif 21944
- Saudi Arabia
| | - Eglal A. Abdelaleem
- Pharmaceutical Analytical Chemistry Department
- Faculty of Pharmacy
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Eman S. Hassan
- Pharmaceutical Analytical Chemistry Department
- Faculty of Pharmacy
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Aml A. Emam
- Pharmaceutical Analytical Chemistry Department
- Faculty of Pharmacy
- Beni-Suef University
- Beni-Suef
- Egypt
| |
Collapse
|
10
|
Lee D, Miwa Y, Wu J, Shoda C, Jeong H, Kawagishi H, Tsubota K, Kurihara T. A Fairy Chemical Suppresses Retinal Angiogenesis as a HIF Inhibitor. Biomolecules 2020; 10:E1405. [PMID: 33020402 PMCID: PMC7599576 DOI: 10.3390/biom10101405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022] Open
Abstract
Neovascular retinal degeneration is a leading cause of blindness in advanced countries. Anti-vascular endothelial growth factor (VEGF) drugs have been used for neovascular retinal diseases; however, anti-VEGF drugs may cause the development of chorioretinal atrophy in chronic therapy as they affect the physiological amount of VEGF needed for retinal homeostasis. Hypoxia-inducible factor (HIF) is a transcription factor inducing VEGF expression under hypoxic and other stress conditions. Previously, we demonstrated that HIF was involved with pathological retinal angiogenesis in murine models of oxygen-induced retinopathy (OIR), and pharmacological HIF inhibition prevented retinal neovascularization by reducing an ectopic amount of VEGF. Along with this, we attempted to find novel effective HIF inhibitors. Compounds originally isolated from mushroom-forming fungi were screened for prospective HIF inhibitors utilizing cell lines of 3T3, ARPE-19 and 661W. A murine OIR model was used to examine the anti-angiogenic effects of the compounds. As a result, 2-azahypoxanthine (AHX) showed an inhibitory effect on HIF activation and suppressed Vegf mRNA upregulation under CoCl2-induced pseudo-hypoxic conditions. Oral administration of AHX significantly suppressed retinal neovascular tufts in the OIR model. These data suggest that AHX could be a promising anti-angiogenic agent in retinal neovascularization by inhibiting HIF activation.
Collapse
Affiliation(s)
- Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.M.); (C.S.); (H.J.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.M.); (C.S.); (H.J.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Animal Eye Care Tokyo Animal Eye Clinic, Tokyo 158-0093, Japan
| | - Jing Wu
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan; (J.W.); (H.K.)
| | - Chiho Shoda
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.M.); (C.S.); (H.J.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Ophthalmology, Nihon University School of Medicine, Tokyo 173-0032, Japan
| | - Heonuk Jeong
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.M.); (C.S.); (H.J.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hirokazu Kawagishi
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan; (J.W.); (H.K.)
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Tsubota Laboratory, Inc., Tokyo 160-0016, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.M.); (C.S.); (H.J.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
11
|
Ito A, Choi JH, Takemura H, Kotajima M, Wu J, Tokuyama S, Hirai H, Asakawa T, Ouchi H, Inai M, Kan T, Kawagishi H. Biosynthesis of the Fairy Chemicals, 2-Azahypoxanthine and Imidazole-4-carboxamide, in the Fairy Ring-Forming Fungus Lepista sordida. JOURNAL OF NATURAL PRODUCTS 2020; 83:2469-2476. [PMID: 32786881 DOI: 10.1021/acs.jnatprod.0c00394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fairy rings resulting from a fungus-plant interaction appear worldwide. 2-Azahypoxanthine (AHX) and imidazole-4-carboxamide (ICA) were first isolated from the culture broth of one of the fairy ring-forming fungi, Lepista sordida. Afterward, a common metabolite of AHX in plants, 2-aza-8-oxohypoxanthine (AOH), was found in AHX-treated rice. The biosynthetic pathway of the three compounds that are named as fairy chemicals (FCs) in plants has been partially elucidated; however, that in mushrooms remains unknown. In this study, it was revealed that the carbon skeletons of AHX and ICA were constructed from Gly in L. sordida mycelia and the fungus metabolized 5-aminoimidazole-4-carboxamide (AICA) to both of the compounds. These results indicated that FCs were biosynthesized by a diversion of the purine metabolic pathway in L. sordida mycelia, similar to that in plants. Furthermore, we showed that recombinant adenine phosphoribosyltransferase (APRT) catalyzed reversible interconversion not only between 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranosyl 5'-monophosphate (AICAR) and AICA but also between ICA-ribotide (ICAR) and ICA. Furthermore, the presence of ICAR in L. sordida mycelia was proven for the first time by LC-MS/MS detection, and this study provided the first report that there was a novel metabolic pathway of ICA in which its ribotide was an intermediate in the fungus.
Collapse
Affiliation(s)
- Akinobu Ito
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | | | - Hirohide Takemura
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | | | | | | | | | - Tomohiro Asakawa
- Marine Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka City, Kanagawa 259-1292, Japan
| | - Hitoshi Ouchi
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Makoto Inai
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshiyuki Kan
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | | |
Collapse
|
12
|
Choi JH, Matsuzaki N, Wu J, Kotajima M, Hirai H, Kondo M, Asakawa T, Inai M, Ouchi H, Kan T, Kawagishi H. Ribosides and Ribotide of a Fairy Chemical, Imidazole-4-carboxamide, as Its Metabolites in Rice. Org Lett 2019; 21:7841-7845. [PMID: 31518147 DOI: 10.1021/acs.orglett.9b02833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The metabolism of imidazole-4-carboxamide (ICA) in plants has been unknown. Two metabolites (1 and 2) were isolated from ICA-treated rice, and their structures were determined by spectroscopic analysis including the single-crystal X-ray diffraction technique and synthesis. The ribotide of ICA (3), whose existence was predicted, was also synthesized and detected from the treated rice by LC-MS/MS. These results indicated that rice might interconvert ICA, 1, and 3 to regulate the biological activity.
Collapse
Affiliation(s)
- Jae-Hoon Choi
- Graduate School of Integrated Science and Technology , Shizuoka University , 836 Ohya , Suruga-ku, Shizuoka 422-8529 , Japan.,Research Institute of Green Science and Technology , Shizuoka University , 836 Ohya , Suruga-ku, Shizuoka 422-8529 , Japan
| | - Nobuo Matsuzaki
- Graduate School of Science and Technology , Shizuoka University , 836 Ohya , Suruga-ku, Shizuoka 422-8529 , Japan
| | - Jing Wu
- Research Institute of Green Science and Technology , Shizuoka University , 836 Ohya , Suruga-ku, Shizuoka 422-8529 , Japan
| | - Mihaya Kotajima
- Graduate School of Integrated Science and Technology , Shizuoka University , 836 Ohya , Suruga-ku, Shizuoka 422-8529 , Japan
| | - Hirofumi Hirai
- Graduate School of Integrated Science and Technology , Shizuoka University , 836 Ohya , Suruga-ku, Shizuoka 422-8529 , Japan.,Research Institute of Green Science and Technology , Shizuoka University , 836 Ohya , Suruga-ku, Shizuoka 422-8529 , Japan
| | - Mitsuru Kondo
- Research Institute of Green Science and Technology , Shizuoka University , 836 Ohya , Suruga-ku, Shizuoka 422-8529 , Japan
| | - Tomohiro Asakawa
- Tokai University Institute of Innovative Science and Technology , 4-1-1 Kitakaname , Hiratsuka City , Kanagawa 259-1292 , Japan
| | - Makoto Inai
- School of Pharmaceutical Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Hitoshi Ouchi
- School of Pharmaceutical Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Toshiyuki Kan
- School of Pharmaceutical Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Hirokazu Kawagishi
- Graduate School of Integrated Science and Technology , Shizuoka University , 836 Ohya , Suruga-ku, Shizuoka 422-8529 , Japan.,Research Institute of Green Science and Technology , Shizuoka University , 836 Ohya , Suruga-ku, Shizuoka 422-8529 , Japan.,Graduate School of Science and Technology , Shizuoka University , 836 Ohya , Suruga-ku, Shizuoka 422-8529 , Japan
| |
Collapse
|
13
|
Takemura H, Choi JH, Matsuzaki N, Taniguchi Y, Wu J, Hirai H, Motohashi R, Asakawa T, Ikeuchi K, Inai M, Kan T, Kawagishi H. A Fairy Chemical, Imidazole-4-carboxamide, is Produced on a Novel Purine Metabolic Pathway in Rice. Sci Rep 2019; 9:9899. [PMID: 31289299 PMCID: PMC6616479 DOI: 10.1038/s41598-019-46312-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/14/2019] [Indexed: 11/08/2022] Open
Abstract
Rings or arcs of fungus-regulated plant growth occurring on the floor of woodlands and grasslands are commonly called "fairy rings". Fairy chemicals, 2-azahypoxanthine (AHX), imidazole-4-carboxamide (ICA), and 2-aza-8-oxohypoxanthine (AOH), are plant growth regulators involved in the phenomenon. The endogeny and biosynthetic pathways of AHX and AOH in plants have already been proven, however, those of ICA have remained unclear. We developed a high-sensitivity detection method for FCs including ICA and the endogenous ICA was detected in some plants for the first time. The quantitative analysis of the endogenous level of ICA in rice and Arabidopsis were performed using 13C-double labeled ICA. In addition, the incorporation experiment and enzyme assay using the labeled compound into rice and partially purified fraction of rice indicated that ICA is biosynthesized from 5-aminoimidazole-4-carboxamide (AICA), a metabolite on the purine metabolic pathway. The relationship between ICA and AHX was also discussed based on quantitative analysis and gene expression analysis.
Collapse
Affiliation(s)
- Hirohide Takemura
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Jae-Hoon Choi
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Nobuo Matsuzaki
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yuki Taniguchi
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Jing Wu
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Hirofumi Hirai
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Reiko Motohashi
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Tomohiro Asakawa
- Institute of Innovative Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka City, Kanagawa, 259-1292, Japan
| | - Kazutada Ikeuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Makoto Inai
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Toshiyuki Kan
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hirokazu Kawagishi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
14
|
KAWAGISHI H. Are fairy chemicals a new family of plant hormones? PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:29-38. [PMID: 30643094 PMCID: PMC6395780 DOI: 10.2183/pjab.95.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/05/2018] [Indexed: 05/13/2023]
Abstract
2-Azahypoxanthine (AHX, 1) and imidazole-4-carboxamide (ICA, 2) were isolated from a fairy-ring-forming fungus Lepista sordida. AHX was converted into a metabolite 2-aza-8-oxo-hypoxanthine (AOH, 3) in plants. It was found out that these three compounds, named as fairy chemicals (FCs), endogenously exist in plants and are biosynthesized via a new purine metabolic pathway. FCs provided tolerance to the plants against various stresses and regulated the growth of all the plants. In addition, FCs increased the yield of rice, wheat, and other crops in the greenhouse and/or field experiments.
Collapse
Affiliation(s)
- Hirokazu KAWAGISHI
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
15
|
|
16
|
Kawagishi H. Fairy chemicals - a candidate for a new family of plant hormones and possibility of practical use in agriculture. Biosci Biotechnol Biochem 2018. [PMID: 29513130 DOI: 10.1080/09168451.2018.1445523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
2-Azahypoxanthine (AHX, 1) and imidazole-4-carboxamide (ICA, 2) were isolated from a fairy-ring forming fungus Lepista sordida. AHX was converted into a metabolite, 2-aza-8-oxohypoxanthine (AOH, 3), in plants. Afterward, it turned out that these three compounds, fairy chemicals (FSc), endogenously exist in plants and are biosynthesized via a new purine metabolic pathway. Furthermore, FCs increased the yields of rice, wheat and other crops in the filled experiments.
Collapse
Affiliation(s)
- Hirokazu Kawagishi
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
17
|
Abstract
Abstract
Fungi including mushrooms have been proved to be an important biosource of numerous metabolites having a huge variety of chemical structures and diverse bioactivities. Metabolites of mushrooms are of remarkable importance as new lead compounds for medicine and agrochemicals. This review presents some of our studies on biologically functional molecules purified from mushroom-forming fungi; (1) endoplasmic reticulum stress suppressor, (2) osteoclast-forming suppressing compounds, (3) plant growth regulators.
Collapse
Affiliation(s)
- Jae-Hoon Choi
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
18
|
Davison EK, Sperry J. Natural Products with Heteroatom-Rich Ring Systems. JOURNAL OF NATURAL PRODUCTS 2017; 80:3060-3079. [PMID: 29135244 DOI: 10.1021/acs.jnatprod.7b00575] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This review focuses on all known natural products that contain a "heteroatom-rich" ring system, specifically a five-, six- or seven-membered ring that contains three or more heteroatoms. The isolation and biological activity of these natural products is discussed, along with the biosynthetic processes that Nature employs to assemble these rare heterocyclic frameworks.
Collapse
Affiliation(s)
- Emma K Davison
- School of Chemical Sciences, University of Auckland , 23 Symonds Street, Auckland 1142, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, University of Auckland , 23 Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
19
|
Effects of 2-azahypoxanthine on extracellular terpene accumulations by the green microalga Botryococcus braunii, race B. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Choi JH, Kikuchi A, Pumkaeo P, Hirai H, Tokuyama S, Kawagishi H. Bioconversion of AHX to AOH by resting cells of Burkholderia contaminans CH-1. Biosci Biotechnol Biochem 2016; 80:2045-50. [DOI: 10.1080/09168451.2016.1189314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Fairy rings are zones of stimulated grass growth owing to the interaction between a fungus and a plant. We previously reported the discovery of two novel plant-growth regulating compounds related to forming fairy rings, 2-azahypoxanthine (AHX) and 2-aza-8-oxohypoxanthine (AOH). In this study, a bacterial strain CH-1 was isolated from an airborne-contaminated nutrient medium containing AHX. The strain converted AHX to AOH and identified as Burkholderia contaminans based on the gene sequence of its 16S rDNA. The quantitative production of AOH by resting cells of the strain was achieved. Among seven Burkholderia species, two bacteria and two yeasts tested, B. contaminans CH-1 showed the highest rate of conversion of AHX to AOH. By batch system, up to 10.6 mmol AHX was converted to AOH using the resting cells. The yield of this process reached at 91%.
Collapse
Affiliation(s)
- Jae-Hoon Choi
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan
- Graduate School of Agriculture, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Ayaka Kikuchi
- Graduate School of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Panyapon Pumkaeo
- Graduate School of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Hirofumi Hirai
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan
- Graduate School of Agriculture, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Shinji Tokuyama
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan
- Graduate School of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Hirokazu Kawagishi
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan
- Graduate School of Agriculture, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
21
|
Kawagishi H. Disclosure of Mystery of “Fairy Rings” by Chemistry. J SYN ORG CHEM JPN 2015. [DOI: 10.5059/yukigoseikyokaishi.73.1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Ishikawa R, Yoshida N, Akao Y, Kawabe Y, Inai M, Asakawa T, Hamashima Y, Kan T. Total Syntheses of (+)-Sesamin and (+)-Sesaminol. CHEM LETT 2014. [DOI: 10.1246/cl.140613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryo Ishikawa
- School of Pharmaceutical Sciences, University of Shizuoka
| | - Naoto Yoshida
- School of Pharmaceutical Sciences, University of Shizuoka
| | - Yusuke Akao
- School of Pharmaceutical Sciences, University of Shizuoka
| | - Yusuke Kawabe
- School of Pharmaceutical Sciences, University of Shizuoka
| | - Makoto Inai
- School of Pharmaceutical Sciences, University of Shizuoka
| | | | | | - Toshiyuki Kan
- School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|