1
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
2
|
Kyrychenko A, Ladokhin AS. Fluorescent Probes and Quenchers in Studies of Protein Folding and Protein-Lipid Interactions. CHEM REC 2024; 24:e202300232. [PMID: 37695081 PMCID: PMC11113672 DOI: 10.1002/tcr.202300232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/20/2023] [Indexed: 09/12/2023]
Abstract
Fluorescence spectroscopy provides numerous methodological tools for structural and functional studies of biological macromolecules and their complexes. All fluorescence-based approaches require either existence of an intrinsic probe or an introduction of an extrinsic one. Moreover, studies of complex systems often require an additional introduction of a specific quencher molecule acting in combination with a fluorophore to provide structural or thermodynamic information. Here, we review the fundamentals and summarize the latest progress in applications of different classes of fluorescent probes and their specific quenchers, aimed at studies of protein folding and protein-membrane interactions. Specifically, we discuss various environment-sensitive dyes, FRET probes, probes for short-distance measurements, and several probe-quencher pairs for studies of membrane penetration of proteins and peptides. The goals of this review are: (a) to familiarize the readership with the general concept that complex biological systems often require both a probe and a quencher to decipher mechanistic details of functioning and (b) to provide example of the immediate applications of the described methods.
Collapse
Affiliation(s)
- Alexander Kyrychenko
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv, 61022, Ukraine
| | - Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, United States
| |
Collapse
|
3
|
Pivovarenko VG, Klymchenko AS. Fluorescent Probes Based on Charge and Proton Transfer for Probing Biomolecular Environment. CHEM REC 2024; 24:e202300321. [PMID: 38158338 DOI: 10.1002/tcr.202300321] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Fluorescent probes for sensing fundamental properties of biomolecular environment, such as polarity and hydration, help to study assembly of lipids into biomembranes, sensing interactions of biomolecules and imaging physiological state of the cells. Here, we summarize major efforts in the development of probes based on two photophysical mechanisms: (i) an excited-state intramolecular charge transfer (ICT), which is represented by fluorescent solvatochromic dyes that shift their emission band maximum as a function of environment polarity and hydration; (ii) excited-state intramolecular proton transfer (ESIPT), with particular focus on 5-membered cyclic systems, represented by 3-hydroxyflavones, because they exhibit dual emission sensitive to the environment. For both ICT and ESIPT dyes, the design of the probes and their biological applications are summarized. Thus, dyes bearing amphiphilic anchors target lipid membranes and report their lipid organization, while targeting ligands direct them to specific organelles for sensing their local environment. The labels, amino acid and nucleic acid analogues inserted into biomolecules enable monitoring their interactions with membranes, proteins and nucleic acids. While ICT probes are relatively simple and robust environment-sensitive probes, ESIPT probes feature high information content due their dual emission. They constitute a powerful toolbox for addressing multitude of biological questions.
Collapse
Affiliation(s)
- Vasyl G Pivovarenko
- Department of Chemistry, Kyiv National Taras Shevchenko University, 01033, Kyiv, Ukraine
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, ITI SysChem, Université de Strasbourg, 67401, Illkirch, France
| |
Collapse
|
4
|
Yousef M, Szabó I, Biri‐Kovács B, Szeder B, Illien F, Sagan S, Bánóczi Z. Modification of Short Non‐Permeable Peptides to Increase Cellular Uptake and Cytostatic Activity of Their Conjugates. ChemistrySelect 2021. [DOI: 10.1002/slct.202103150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mo'ath Yousef
- Department of Organic Chemistry Eötvös L. University Budapest Hungary
| | - Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry Eötvös Loránd Research Network (ELKH) Budapest Hungary
| | - Beáta Biri‐Kovács
- MTA-ELTE Research Group of Peptide Chemistry Eötvös Loránd Research Network (ELKH) Budapest Hungary
| | - Bálint Szeder
- Research Centre for Natural Sciences Institute of Enzymology Budapest Hungary
| | - Françoise Illien
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Sandrine Sagan
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Zoltán Bánóczi
- Department of Organic Chemistry Eötvös L. University Budapest Hungary
| |
Collapse
|
5
|
Afonin S, Koniev S, Préau L, Takamiya M, Strizhak AV, Babii O, Hrebonkin A, Pivovarenko VG, Dathe M, le Noble F, Rastegar S, Strähle U, Ulrich AS, Komarov IV. In Vivo Behavior of the Antibacterial Peptide Cyclo[RRRWFW], Explored Using a 3-Hydroxychromone-Derived Fluorescent Amino Acid. Front Chem 2021; 9:688446. [PMID: 34262894 PMCID: PMC8273159 DOI: 10.3389/fchem.2021.688446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/11/2021] [Indexed: 11/20/2022] Open
Abstract
Labeling biomolecules with fluorescent labels is an established tool for structural, biochemical, and biophysical studies; however, it remains underused for small peptides. In this work, an amino acid bearing a 3-hydroxychromone fluorophore, 2-amino-3-(2-(furan-2-yl)-3-hydroxy-4-oxo-4H-chromen-6-yl)propanoic acid (FHC), was incorporated in a known hexameric antimicrobial peptide, cyclo[RRRWFW] (cWFW), in place of aromatic residues. Circular dichroism spectropolarimetry and antibacterial activity measurements demonstrated that the FHC residue perturbs the peptide structure depending on labeling position but does not modify the activity of cWFW significantly. FHC thus can be considered an adequate label for studies of the parent peptide. Several analytical and imaging techniques were used to establish the activity of the obtained labeled cWFW analogues toward animal cells and to study the behavior of the peptides in a multicellular organism. The 3-hydroxychromone fluorophore can undergo excited-state intramolecular proton transfer (ESIPT), resulting in double-band emission from its two tautomeric forms. This feature allowed us to get insights into conformational equilibria of the labeled peptides, localize the cWFW analogues in human cells (HeLa and HEK293) and zebrafish embryos, and assess the polarity of the local environment around the label by confocal fluorescence microscopy. We found that the labeled peptides efficiently penetrated cancerous cells and localized mainly in lipid-containing and/or other nonpolar subcellular compartments. In the zebrafish embryo, the peptides remained in the bloodstream upon injection into the cardinal vein, presumably adhering to lipoproteins and/or microvesicles. They did not diffuse into any tissue to a significant extent during the first 3 h after administration. This study demonstrated the utility of fluorescent labeling by double-emission labels to evaluate biologically active peptides as potential drug candidates in vivo.
Collapse
Affiliation(s)
- Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Serhii Koniev
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Enamine, Kyiv, Ukraine
| | - Laetitia Préau
- Institute of Zoology (ZOO), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexander V. Strizhak
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Enamine, Kyiv, Ukraine
| | - Oleg Babii
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Andrii Hrebonkin
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Margitta Dathe
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, (FMP), Berlin, Germany
| | - Ferdinand le Noble
- Institute of Zoology (ZOO), Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Igor V. Komarov
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Enamine, Kyiv, Ukraine
- Lumobiotics, Karlsruhe, Germany
| |
Collapse
|
6
|
Reszka M, Serdiuk IE, Kozakiewicz K, Nowacki A, Myszka H, Bojarski P, Liberek B. Influence of a 4'-substituent on the efficiency of flavonol-based fluorescent indicators of β-glycosidase activity. Org Biomol Chem 2020; 18:7635-7648. [PMID: 32960207 DOI: 10.1039/d0ob01505a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article presents novel fluorescent probes, based on the excited-state intramolecular proton transfer (ESIPT) phenomenon and flavonols, sensitive to the action of specific glycosidases. 4'-Substituted flavonols were synthesized, using various approaches, and glycosylated with d-glucose, N-acetyl-d-glucosamine and d-glucuronic acid. Evaluation of the β-glycosidase activities was performed in neutral and acidic pH. In all the cases examined, an acidic environment accelerated enzymatic hydrolysis. It was demonstrated that the 4'-chloroflavonyl glycosides of all sugars tested, both in neutral and acidic pH, are the ones most sensitive to the presence of hydrolase. In turn, 4'-dimethylaminoflavonyl glucoside is not sensitive to glucosidase action at all. Generally, the rate of enzymatic hydrolysis increases as the electron-withdrawing nature of the 4'-substituent increases. An exception is the trifluoromethyl group which, in spite of having the most favourable Hammett constant, does not contribute enough to increase the rate of hydrolysis of its glucoside. The presented experimental results are supported by the electrostatic potential (ESP) analysis and related to the mechanisms of glycoside bond enzymatic hydrolysis.
Collapse
Affiliation(s)
- Milena Reszka
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | | | | | | | | | | | | |
Collapse
|
7
|
Michel BY, Dziuba D, Benhida R, Demchenko AP, Burger A. Probing of Nucleic Acid Structures, Dynamics, and Interactions With Environment-Sensitive Fluorescent Labels. Front Chem 2020; 8:112. [PMID: 32181238 PMCID: PMC7059644 DOI: 10.3389/fchem.2020.00112] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Fluorescence labeling and probing are fundamental techniques for nucleic acid analysis and quantification. However, new fluorescent probes and approaches are urgently needed in order to accurately determine structural and conformational dynamics of DNA and RNA at the level of single nucleobases/base pairs, and to probe the interactions between nucleic acids with proteins. This review describes the means by which to achieve these goals using nucleobase replacement or modification with advanced fluorescent dyes that respond by the changing of their fluorescence parameters to their local environment (altered polarity, hydration, flipping dynamics, and formation/breaking of hydrogen bonds).
Collapse
Affiliation(s)
- Benoît Y. Michel
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
| | - Dmytro Dziuba
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Rachid Benhida
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
- Mohamed VI Polytechnic University, UM6P, Ben Guerir, Morocco
| | - Alexander P. Demchenko
- Laboratory of Nanobiotechnologies, Palladin Institute of Biochemistry, Kyiv, Ukraine
- Institute of Physical, Technical and Computer Science, Yuriy Fedkovych National University, Chernivtsi, Ukraine
| | - Alain Burger
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
| |
Collapse
|
8
|
Vakuliuk O, Jun YW, Vygranenko K, Clermont G, Reo YJ, Blanchard‐Desce M, Ahn KH, Gryko DT. Modified Isoindolediones as Bright Fluorescent Probes for Cell and Tissue Imaging. Chemistry 2019; 25:13354-13362. [DOI: 10.1002/chem.201902534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/18/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Olena Vakuliuk
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Yong Woong Jun
- Department of Chemistry POSTECH 77 Cheongam-Ro Nam-Gu Pohang, Gyungbuk 37673 Korea
| | - Kateryna Vygranenko
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | | | - Ye Jin Reo
- Department of Chemistry POSTECH 77 Cheongam-Ro Nam-Gu Pohang, Gyungbuk 37673 Korea
| | | | - Kyo Han Ahn
- Department of Chemistry POSTECH 77 Cheongam-Ro Nam-Gu Pohang, Gyungbuk 37673 Korea
| | - Daniel T. Gryko
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
9
|
Bernal-Escalante J, López-Vázquez A, Araiza-Olivera D, Jiménez-Sánchez A. Organotin(iv) differential fluorescent probe for controlled subcellular localization and nuclear microviscosity monitoring. Chem Commun (Camb) 2019; 55:8246-8249. [DOI: 10.1039/c9cc04179f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dual-emissive fluorescent probe based on the organotin(iv) ion enabled unique tracking of the local microviscosity through a differential and controlled nuclear–cytosolic redistribution.
Collapse
Affiliation(s)
- Jasmine Bernal-Escalante
- Instituto de Química – Universidad Nacional Autónoma de México
- Ciudad Universitaria
- De. Coyoacán 04510
- Mexico
| | - Armando López-Vázquez
- Instituto de Química – Universidad Nacional Autónoma de México
- Ciudad Universitaria
- De. Coyoacán 04510
- Mexico
| | - Daniela Araiza-Olivera
- Instituto de Química – Universidad Nacional Autónoma de México
- Ciudad Universitaria
- De. Coyoacán 04510
- Mexico
| | - Arturo Jiménez-Sánchez
- Instituto de Química – Universidad Nacional Autónoma de México
- Ciudad Universitaria
- De. Coyoacán 04510
- Mexico
| |
Collapse
|
10
|
Gulyani A, Dey N, Bhattacharya S. Highly Responsive Fluorescent Assemblies Allow for Unique, Multiparametric Sensing of the Phospholipid Membrane Environment. Chemistry 2018; 25:1507-1514. [DOI: 10.1002/chem.201803627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Akash Gulyani
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012 India
- Institute for Stem Cell Biology & Regenerative Medicine; GKVK Post, Bangalore 560065 India
| | - Nilanjan Dey
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012 India
- Institute for Stem Cell Biology & Regenerative Medicine; GKVK Post, Bangalore 560065 India
| | - Santanu Bhattacharya
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012 India
- Present address: Indian Association for Cultivation of Science; Kolkata 700032 India
| |
Collapse
|
11
|
Avci FG, Akbulut BS, Ozkirimli E. Membrane Active Peptides and Their Biophysical Characterization. Biomolecules 2018; 8:biom8030077. [PMID: 30135402 PMCID: PMC6164437 DOI: 10.3390/biom8030077] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
In the last 20 years, an increasing number of studies have been reported on membrane active peptides. These peptides exert their biological activity by interacting with the cell membrane, either to disrupt it and lead to cell lysis or to translocate through it to deliver cargos into the cell and reach their target. Membrane active peptides are attractive alternatives to currently used pharmaceuticals and the number of antimicrobial peptides (AMPs) and peptides designed for drug and gene delivery in the drug pipeline is increasing. Here, we focus on two most prominent classes of membrane active peptides; AMPs and cell-penetrating peptides (CPPs). Antimicrobial peptides are a group of membrane active peptides that disrupt the membrane integrity or inhibit the cellular functions of bacteria, virus, and fungi. Cell penetrating peptides are another group of membrane active peptides that mainly function as cargo-carriers even though they may also show antimicrobial activity. Biophysical techniques shed light on peptide–membrane interactions at higher resolution due to the advances in optics, image processing, and computational resources. Structural investigation of membrane active peptides in the presence of the membrane provides important clues on the effect of the membrane environment on peptide conformations. Live imaging techniques allow examination of peptide action at a single cell or single molecule level. In addition to these experimental biophysical techniques, molecular dynamics simulations provide clues on the peptide–lipid interactions and dynamics of the cell entry process at atomic detail. In this review, we summarize the recent advances in experimental and computational investigation of membrane active peptides with particular emphasis on two amphipathic membrane active peptides, the AMP melittin and the CPP pVEC.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Bioengineering Department, Marmara University, Kadikoy, 34722 Istanbul, Turkey.
| | | | - Elif Ozkirimli
- Chemical Engineering Department, Bogazici University, Bebek, 34342 Istanbul, Turkey.
| |
Collapse
|
12
|
Kucherak OA, Shvadchak VV, Kyriukha YA, Yushchenko DA. Synthesis of a Fluorescent Probe for Sensing Multiple Protein States. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Oleksandr A. Kucherak
- Laboratory of Chemical Biology; Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Volodymyr V. Shvadchak
- Laboratory of Chemical Biology; Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Yevhenii A. Kyriukha
- Laboratory of Chemical Biology; Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Dmytro A. Yushchenko
- Laboratory of Chemical Biology; Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| |
Collapse
|
13
|
Li D, Xing Y, Ding L, Wu C, Hou G, Song B. Tuning the emission of a water-soluble 3-hydroxyflavone derivative by host-guest complexation. SOFT MATTER 2018; 14:4231-4237. [PMID: 29624193 DOI: 10.1039/c8sm00349a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
3-Hydroxyflavone derivatives have great potential as fluorescent probes for bio-labeling in aqueous medium. They were extensively studied in various organic solvents for the "excited state intramolecular proton transfer" process, but seldom addressed in aqueous solution due to the poor water solubility. Herein, an amphiphilic molecule bearing 3-hydroxyflavone and oligo(ethylene oxide) (denoted as 3HF-EO) was designed and synthesized. Different from the fluorescence in organic solvents, 3HF-EO in aqueous solution showed a remarkable single fluorescence emission, which is ascribed to the fluorescence of its anionic species. We found that the fluorescence intensity could be efficiently tuned via host-guest complexation. α-CD has little effect on the emission, while β-CD and γ-CD lead to enhanced and reduced emissions of 3HF-EO, respectively. The 1H NMR and 2D NOESY NMR spectra indicate that α-CD barely had any interaction with 3HF-EO, while β-CD and γ-CD formed complexes with one and two 3HF-EO molecules, respectively. These results provide a sound explanation for the modulated fluorescence intensity.
Collapse
Affiliation(s)
- Dahua Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | | | | | | | | | | |
Collapse
|
14
|
Fleissner F, Pütz S, Schwendy M, Bonn M, Parekh SH. Measuring Intracellular Secondary Structure of a Cell-Penetrating Peptide in Situ. Anal Chem 2017; 89:11310-11317. [DOI: 10.1021/acs.analchem.7b01895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Frederik Fleissner
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - Sabine Pütz
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - Mischa Schwendy
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - Mischa Bonn
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - Sapun H. Parekh
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| |
Collapse
|
15
|
Pivovarenko VG, Bugera O, Humbert N, Klymchenko AS, Mély Y. A Toolbox of Chromones and Quinolones for Measuring a Wide Range of ATP Concentrations. Chemistry 2017; 23:11927-11934. [PMID: 28708306 DOI: 10.1002/chem.201702484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Indexed: 12/27/2022]
Abstract
A series of 26 3-hydroxychromones, three bis-flavonols and four 3-hydroxyquinolones were studied to evaluate their fluorescence response to interaction with ATP in buffer. The dyes differ by the total charge, the size and number of their aromatic units, as well as the position or electron-donating ability of their substituents. All of them were suggested to form complexes with ATP of 1:1 and 1:2 stoichiometry, which can be evidenced by their bright fluorescence and their 3000-6000 cm-1 red-shifted excitation band. These fluorescent complexes allow detection of ATP concentrations over 3 orders of magnitude, whereas most other known probes cover no more than two orders. In total, the dyes allow ATP detection from 0.001 to 57 mm. In addition, most of the dye-ATP complexes can be excited in the visible and monitored in the red region of the spectrum. The response amplitude of the described dyes to ATP is as high as for the best known probes. Considering that complexation takes place at neutral pH, the studied dyes form a toolbox of fluorescent probes for intensiometric and ratiometric measurements of ATP concentration in a broad concentration range. Finally, the obtained results stimulate the idea that most of natural 3-hydroxyflavones in living cells may form complexes with ATP.
Collapse
Affiliation(s)
- Vasyl G Pivovarenko
- Department of Chemistry, National Taras Shevchenko, University of Kyiv, 01601, Kyiv, Ukraine
| | - Oleksandra Bugera
- Department of Chemistry, National Taras Shevchenko, University of Kyiv, 01601, Kyiv, Ukraine
| | - Nicolas Humbert
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 du CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Andrey S Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 du CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 du CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch, France
| |
Collapse
|
16
|
Klymchenko AS. Solvatochromic and Fluorogenic Dyes as Environment-Sensitive Probes: Design and Biological Applications. Acc Chem Res 2017; 50:366-375. [PMID: 28067047 DOI: 10.1021/acs.accounts.6b00517] [Citation(s) in RCA: 679] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescent environment-sensitive probes are specially designed dyes that change their fluorescence intensity (fluorogenic dyes) or color (e.g., solvatochromic dyes) in response to change in their microenvironment polarity, viscosity, and molecular order. The studies of the past decade, including those of our group, have shown that these molecules become universal tools in fluorescence sensing and imaging. In fact, any biomolecular interaction or change in biomolecular organization results in modification of the local microenvironment, which can be directly monitored by these types of probes. In this Account, the main examples of environment-sensitive probes are summarized according to their design concepts. Solvatochromic dyes constitute a large class of environment-sensitive probes which change their color in response to polarity. Generally, they are push-pull dyes undergoing intramolecular charge transfer. Emission of their highly polarized excited state shifts to the red in more polar solvents. Excited-state intramolecular proton transfer is the second key concept to design efficient solvatochromic dyes, which respond to the microenvironment by changing relative intensity of the two emissive tautomeric forms. Due to their sensitivity to polarity and hydration, solvatochromic dyes have been successfully applied to biological membranes for studying lipid domains (rafts), apoptosis and endocytosis. As fluorescent labels, solvatochromic dyes can detect practically any type of biomolecular interactions, involving proteins, nucleic acids and biomembranes, because the binding event excludes local water molecules from the interaction site. On the other hand, fluorogenic probes usually exploit intramolecular rotation (conformation change) as a design concept, with molecular rotors being main representatives. These probes were particularly efficient for imaging viscosity and lipid order in biomembranes as well as to light up biomolecular targets, such as antibodies, aptamers and receptors. The emerging concepts to achieve fluorogenic response to the microenvironment include ground-state isomerization, aggregation-caused quenching, and aggregation-induced emission. The ground-state isomerization exploits, for instance, polarity-dependent spiro-lactone formation in silica-rhodamines. The aggregation-caused quenching uses disruption of the self-quenched dimers and nanoassemblies of dyes in less polar environments of lipid membranes and biomolecules. The aggregation-induced emission couples target recognition with formation of highly fluorescent dye aggregates. Overall, solvatochromic and fluorogenic probes enable background-free bioimaging in wash-free conditions as well as quantitative analysis when combined with advanced microscopy, such as fluorescence lifetime (FLIM) and ratiometric imaging. Further development of fluorescent environment-sensitive probes should address some remaining problems: (i) improving their optical properties, especially brightness, photostability, and far-red to near-infrared operating range; (ii) minimizing nonspecific interactions of the probes in biological systems; (iii) their adaptation for advanced microscopies, notably for superresolution and in vivo imaging.
Collapse
Affiliation(s)
- Andrey S. Klymchenko
- Laboratoire de Biophotonique et Pharmacologie,
UMR 7213 CNRS, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
17
|
Quantitative fluorescence spectroscopy and flow cytometry analyses of cell-penetrating peptides internalization pathways: optimization, pitfalls, comparison with mass spectrometry quantification. Sci Rep 2016; 6:36938. [PMID: 27841303 PMCID: PMC5107916 DOI: 10.1038/srep36938] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/21/2016] [Indexed: 01/06/2023] Open
Abstract
The mechanism of cell-penetrating peptides entry into cells is unclear, preventing the development of more efficient vectors for biotechnological or therapeutic purposes. Here, we developed a protocol relying on fluorometry to distinguish endocytosis from direct membrane translocation, using Penetratin, TAT and R9. The quantities of internalized CPPs measured by fluorometry in cell lysates converge with those obtained by our previously reported mass spectrometry quantification method. By contrast, flow cytometry quantification faces several limitations due to fluorescence quenching processes that depend on the cell line and occur at peptide/cell ratio >6.108 for CF-Penetratin. The analysis of cellular internalization of a doubly labeled fluorescent and biotinylated Penetratin analogue by the two independent techniques, fluorometry and mass spectrometry, gave consistent results at the quantitative and qualitative levels. Both techniques revealed the use of two alternative translocation and endocytosis pathways, whose relative efficacy depends on cell-surface sugars and peptide concentration. We confirmed that Penetratin translocates at low concentration and uses endocytosis at high μM concentrations. We further demonstrate that the hydrophobic/hydrophilic nature of the N-terminal extremity impacts on the internalization efficiency of CPPs. We expect these results and the associated protocols to help unraveling the translocation pathway to the cytosol of cells.
Collapse
|
18
|
Zamotaiev OM, Shvadchak V, Sych TP, Melnychuk NA, Yushchenko D, Mely Y, Pivovarenko VG. Environment-sensitive quinolone demonstrating long-lived fluorescence and unusually slow excited-state intramolecular proton transfer kinetics. Methods Appl Fluoresc 2016; 4:034004. [PMID: 28355165 DOI: 10.1088/2050-6120/4/3/034004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new small fluorescent dye based on 3-hydroxybenzo[g]quinolone, a benzo-analogue of Pseudomonas quinolone signal species, has been synthesized. The dye demonstrates interesting optical properties, with absorption in the visible region, two band emission due to an excited-state intramolecular proton transfer (ESIPT) reaction and high fluorescence quantum yield in both protic and aprotic media. Time-resolved fluorescence spectroscopy shows that the ESIPT reaction time is unusually long (up to 8 ns), indicating that both forward and backward ESIPT reactions are very slow in comparison to other 3-hydroxyquinolones. In spite of these slow rate constants, the ESIPT reaction was found to show a reversible character as a result of the very long lifetimes of both N* and T* forms (up to 16 ns). The ESIPT reaction rate is mainly controlled by the hydrogen bond donor ability in protic solvents and the polarity in aprotic solvents. Using large unilamellar vesicles and giant unilamellar vesicles of different lipid compositions, the probe was shown to preferentially label liquid disordered phases.
Collapse
Affiliation(s)
- O M Zamotaiev
- Department of Chemistry, National Taras Shevchenko University of Kyiv, 01601 Kyiv, Ukraine
| | | | | | | | | | | | | |
Collapse
|
19
|
Serdiuk IE, Reszka M, Myszka H, Krzymiński K, Liberek B, Roshal AD. Flavonol-based fluorescent indicator for determination of β-glucosidase activity. RSC Adv 2016. [DOI: 10.1039/c6ra06062e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A flavonol-based ESIPT fluorescence probe for evaluation of β-glucosidase activity was synthesized and tested for sensitivity to enzymatic cleavage at different conditions.
Collapse
Affiliation(s)
- Illia E. Serdiuk
- Department of Chemistry
- University of Gdańsk
- 80-308 Gdańsk
- Poland
- Institute of Chemistry
| | - Milena Reszka
- Department of Chemistry
- University of Gdańsk
- 80-308 Gdańsk
- Poland
| | - Henryk Myszka
- Department of Chemistry
- University of Gdańsk
- 80-308 Gdańsk
- Poland
| | | | - Beata Liberek
- Department of Chemistry
- University of Gdańsk
- 80-308 Gdańsk
- Poland
| | - Alexander D. Roshal
- Institute of Chemistry
- V. N. Karazin Kharkiv National University
- Kharkiv
- 61022 Ukraine
| |
Collapse
|
20
|
Dal Molin M, Verolet Q, Colom A, Letrun R, Derivery E, Gonzalez-Gaitan M, Vauthey E, Roux A, Sakai N, Matile S. Fluorescent flippers for mechanosensitive membrane probes. J Am Chem Soc 2015; 137:568-71. [PMID: 25584496 PMCID: PMC4308758 DOI: 10.1021/ja5107018] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
In this report, “fluorescent
flippers” are introduced
to create planarizable push–pull probes with the mechanosensitivity
and fluorescence lifetime needed for practical use in biology. Twisted
push–pull scaffolds with large and bright dithienothiophenes
and their S,S-dioxides as the first
“fluorescent flippers” are shown to report on the lateral
organization of lipid bilayers with quantum yields above 80% and lifetimes
above 4 ns. Their planarization in liquid-ordered (Lo)
and solid-ordered (So) membranes results in red shifts
in excitation of up to +80 nm that can be transcribed into red shifts
in emission of up to +140 nm by Förster resonance energy transfer
(FRET). These unique properties are compatible with multidomain imaging
in giant unilamellar vesicles (GUVs) and cells by confocal laser scanning
or fluorescence lifetime imaging microscopy. Controls indicate that
strong push–pull macrodipoles are important, operational probes
do not relocate in response to lateral membrane reorganization, and
two flippers are indeed needed to “really swim,” i.e.,
achieve high mechanosensitivity.
Collapse
Affiliation(s)
- Marta Dal Molin
- School of Chemistry and Biochemistry, National Centre of Competence in Research (NCCR) Chemical Biology, University of Geneva , Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Karpenko IA, Collot M, Richert L, Valencia C, Villa P, Mély Y, Hibert M, Bonnet D, Klymchenko AS. Fluorogenic Squaraine Dimers with Polarity-Sensitive Folding As Bright Far-Red Probes for Background-Free Bioimaging. J Am Chem Soc 2014; 137:405-12. [DOI: 10.1021/ja5111267] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Iuliia A. Karpenko
- Laboratoire
d’Innovation Thérapeutique, UMR 7200 CNRS/Université de Strasbourg, Labex MEDALIS, Faculté de Pharmacie, 74
route du Rhin, 67401 Illkirch, France
| | - Mayeul Collot
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213 CNRS/Université de Strasbourg,
Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Ludovic Richert
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213 CNRS/Université de Strasbourg,
Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Christel Valencia
- Platform
of Integrative Chemical Biology of Strasbourg (PCBIS), FMTS, UMS 3286 CNRS/Université de Strasbourg, ESBS Pôle API, Bld Sébastien Brant, 67401 Illkirch, France
| | - Pascal Villa
- Platform
of Integrative Chemical Biology of Strasbourg (PCBIS), FMTS, UMS 3286 CNRS/Université de Strasbourg, ESBS Pôle API, Bld Sébastien Brant, 67401 Illkirch, France
| | - Yves Mély
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213 CNRS/Université de Strasbourg,
Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Marcel Hibert
- Laboratoire
d’Innovation Thérapeutique, UMR 7200 CNRS/Université de Strasbourg, Labex MEDALIS, Faculté de Pharmacie, 74
route du Rhin, 67401 Illkirch, France
| | - Dominique Bonnet
- Laboratoire
d’Innovation Thérapeutique, UMR 7200 CNRS/Université de Strasbourg, Labex MEDALIS, Faculté de Pharmacie, 74
route du Rhin, 67401 Illkirch, France
| | - Andrey S. Klymchenko
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213 CNRS/Université de Strasbourg,
Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|