1
|
Li SY, Yang XY, Shen PH, Xu L, Xu J, Zhang Q, Xu HJ. Selective Defluoroalkylation and Hydrodefluorination of Trifluoromethyl Groups Photocatalyzed by Dihydroacridine Derivatives. J Org Chem 2023. [PMID: 38054778 DOI: 10.1021/acs.joc.3c02135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The selective functionalization of trifluoromethyl groups through C-F cleavage poses a significant challenge due to the high bond energy of the C(sp3)-F bonds. Herein, we present dihydroacridine derivatives as photocatalysts that can functionalize the C-F bond of trifluoromethyl groups with various alkenes under mild conditions. Mechanistic studies and DFT calculations revealed that upon irradiation, the dihydroacridine derivatives exhibit high reducibility and function as photocatalysts for reductive defluorination. This process involves a sequential single-electron transfer mechanism. This research provides valuable insights into the properties of dihydroacridine derivatives as photocatalysts, highlighting the importance of maintaining a planar conformation and a large conjugated system for optimal catalytic activity. These findings facilitate the efficient catalytic reduction of inert chemical bonds.
Collapse
Affiliation(s)
- Shi-Yu Li
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Xin-Yu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Peng-Hui Shen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Lei Xu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Jun Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Qi Zhang
- Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, P.R. China
| | - Hua-Jian Xu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, P.R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| |
Collapse
|
2
|
Zhu Y, Wu Z, Sun H, Ding J. Photo-Induced, Phenylhydrazine-Promoted Transition-Metal-Free Dehalogenation of Aryl Fluorides, Chlorides, Bromides, and Iodides. Molecules 2023; 28:6915. [PMID: 37836758 PMCID: PMC10574415 DOI: 10.3390/molecules28196915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
In this study, we present a straightforward and highly effective photo-triggered hydrogenation method for aryl halides, devoid of transition-metal catalysts. Through the synergistic utilization of light, PhNHNH2, and a base, we have successfully initiated the desired radical-mediated hydrogenation process. Remarkably, utilizing mild reaction conditions, a wide range of aryl halides, including fluorides, chlorides, bromides, and iodides, can be selectively transformed into their corresponding (hetero)arene counterparts, with exceptional yields. Additionally, this approach demonstrates a remarkable compatibility with diverse functional groups and heterocyclic compounds, highlighting its versatility and potential for use in various chemical transformations.
Collapse
Affiliation(s)
- Yiwei Zhu
- School of Chemistry and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China (J.D.)
| | | | | | | |
Collapse
|
3
|
Heinz M, Weiss G, Shizgal G, Panfilova A, Gansäuer A. Coupling Titanium and Chromium Catalysis in a Reaction Network for the Reprogramming of [BH 4 ] - as Electron Transfer and Hydrogen Atom Transfer Reagent for Radical Chemistry. Angew Chem Int Ed Engl 2023; 62:e202308680. [PMID: 37515484 DOI: 10.1002/anie.202308680] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
We describe a unique catalytic system with an efficient coupling of Ti- and Cr-catalysis in a reaction network that allows the use of [BH4 ]- as stoichiometric hydrogen atom and electron donor in catalytic radical chemistry. The key feature is a relay hydrogen atom transfer from [BH4 ]- to Cr generating the active catalysts under mild conditions. This enables epoxide reductions, regiodivergent epoxide opening and radical cyclizations that are not possible with cooperative catalysis with radicals or by epoxide reductions via Meinwald rearrangement and ensuing carbonyl reduction. No typical SN 2-type reactivity of [BH4 ]- salts is observed.
Collapse
Affiliation(s)
- Michael Heinz
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Gregor Weiss
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Grigoriy Shizgal
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Anastasia Panfilova
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
4
|
Kostromitin VS, Sorokin AO, Levin VV, Dilman AD. Aminals as powerful XAT-reagents: activation of fluorinated alkyl chlorides. Chem Sci 2023; 14:3229-3234. [PMID: 36970090 PMCID: PMC10034144 DOI: 10.1039/d3sc00027c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
Readily available 1,3,5-trimethyl-1,3,5-triazinane serves as an efficient reagent for halogen atom transfer. Under photocatalytic conditions, the triazinane generates an α-aminoalkyl radical, which can activate the C-Cl bond of fluorinated alkyl chlorides. The hydrofluoroalkylation reaction between fluorinated alkyl chlorides and alkenes is described. The efficiency of the diamino-substituted radical derived from the triazinane is associated with stereoelectronic effects defined by a six-membered cycle forcing the anti-periplanar arrangement of the radical orbital and lone pairs of adjacent nitrogen atoms.
Collapse
Affiliation(s)
- Vladislav S Kostromitin
- N. D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
- Lomonosov Moscow State University, Department of Chemistry Leninskie Gory 1-3 119991 Moscow Russian Federation
| | - Artem O Sorokin
- N. D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
- Lomonosov Moscow State University, Department of Chemistry Leninskie Gory 1-3 119991 Moscow Russian Federation
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| |
Collapse
|
5
|
Wang Z, Chen J, Lin Z, Quan Y. Photoinduced Dehydrogenative Borylation via Dihydrogen Bond Bridged Electron Donor and Acceptor Complexes. Chemistry 2023; 29:e202203053. [PMID: 36396602 DOI: 10.1002/chem.202203053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Air-stable amine- and phosphine-boranes are discovered as donors to integrate with pyridinium acceptor for generating photoactive electron-donor-acceptor (EDA) complexes. Experimental results and DFT calculations suggest a dihydrogen bond bridging the donor and acceptor. Irradiating the EDA complex enables an intra-complex single electron transfer to give a boron-centered radical for dehydrogenative borylation with no need of external photosensitizer and radical initiator. The deprotonation of Wheland-like radical intermediate rather than its generation is believed to determine the good ortho-selectivity based on DFT calculations. A variety of α-borylated pyridine derivatives have been readily synthesized with good functional group tolerance.
Collapse
Affiliation(s)
- Zhiyong Wang
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Jiaxin Chen
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Yangjian Quan
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
6
|
Peng TY, Zhang FL, Wang YF. Lewis Base-Boryl Radicals Enabled Borylation Reactions and Selective Activation of Carbon-Heteroatom Bonds. Acc Chem Res 2023; 56:169-186. [PMID: 36571794 DOI: 10.1021/acs.accounts.2c00752] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ConspectusThe past decades have witnessed tremendous progress on radical reactions. However, in comparison with carbon, nitrogen, oxygen, and other main group element centered radicals, the synthetic chemistry of boron centered radicals was less studied, mainly due to the high electron-deficiency and instability of such 3-center-5-electron species. In the 1980s, Roberts and co-workers found that the coordination of a Lewis base (amines or phosphines) with the boron center could form 4-center-7-electron boryl radicals (Lewis base-boryl radicals, LBRs) that are found to be more stable. However, only limited synthetic applications were developed. In 2008, Curran and co-workers achieved a breakthrough with the discovery of N-heterocyclic carbene (NHC) boryl radicals, which could enable a range of radical reduction and polymerization reactions. Despite these exciting findings, more powerful and valuable synthetic applications of LBRs would be expected, given that the structures and reactivities of LBRs could be easily modulated, which would provide ample opportunities to discover new reactions. In this Account, a summary of our key contributions in LBR-enabled radical borylation reactions and selective activation of inert carbon-heteroatom bonds will be presented.Organoboron compounds have shown versatile applications in chemical society, and their syntheses rely principally on ionic borylation reactions. The development of mechanistically different radical borylation reactions allows synthesizing products that are inaccessible by traditional methods. For this purpose, we progressively developed a series of NHC-boryl radical mediated chemo-, regio-, and stereoselective radical borylation reactions of alkenes and alkynes, by which a wide variety of structurally diverse organoboron molecules were successfully prepared. The synthetic utility of these borylated products was also demonstrated. Furthermore, we disclosed a photoredox protocol for oxidative generation of NHC-boryl radicals, which enabled useful defluoroborylation and arylboration reactions.Selective bond activation is an ideal way to convert simple starting materials to value-added products, while the cleavage of inert chemical bonds, in particular the chemoselectivity control when multiple identical bonds are present in similar chemical environments, remains a long-standing challenge. We envisaged that finely tuning the properties of LBRs might provide a new solution to address this challenge. Recently, we disclosed a 4-dimethylaminopyridine (DMAP)-boryl radical promoted sequential C-F bond functionalization of trifluoroacetic acid derivatives, in which the α-C-F bonds were selectively snipped via a spin-center shift mechanism. This strategy enables facile conversion of abundantly available trifluoroacetic acid to highly valuable mono- and difluorinated molecules. Encouraged by this finding, we further developed a boryl radical enabled three-step sequence to construct all-carbon quaternary centers from a range of trichloromethyl groups, where the three C-Cl bonds were selectively cleaved by the rational choice of suitable boryl radical precursors in each step. Furthermore, a boryl radical promoted dehydroxylative alkylation of α-hydroxy carboxylic acid derivatives was achieved, allowing for the efficient conversion of some biomass platform molecules to high value products.
Collapse
Affiliation(s)
- Tian-Yu Peng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026 Anhui, China
| | - Feng-Lian Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026 Anhui, China
| | - Yi-Feng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026 Anhui, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
7
|
Chernov GI, Levin VV, Dilman AD. Photocatalytic reactions of fluoroalkyl iodides with alkenes. Russ Chem Bull 2023. [DOI: 10.1007/s11172-023-3714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
8
|
Kawamoto T, Fukuyama T, Picard B, Ryu I. New directions in radical carbonylation chemistry: combination with electron catalysis, photocatalysis and ring-opening. Chem Commun (Camb) 2022; 58:7608-7617. [PMID: 35758516 DOI: 10.1039/d2cc02700c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radical carbonylation offers potent methods for introducing carbon monoxide into organic molecules. This feature article focuses on our current efforts to develop new strategies for radical carbonylation, which include electron-transfer carbonylation, site-selective C(sp3)-H carbonylation by a photocatalyst and ring-opening carbonylation.
Collapse
Affiliation(s)
- Takuji Kawamoto
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi, 755-8611, Japan
| | - Takahide Fukuyama
- Department of Chemistry, Osaka Metropolitan University (OMU), Sakai, Osaka, 599-8531, Japan
| | - Baptiste Picard
- Organization for Research Promotion, Osaka Metropolitan University (OMU), Sakai, Osaka, 599-8531, Japan.
| | - Ilhyong Ryu
- Organization for Research Promotion, Osaka Metropolitan University (OMU), Sakai, Osaka, 599-8531, Japan. .,Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu, 30010, Taiwan
| |
Collapse
|
9
|
Ye T, Zhang FL, Xia HM, Zhou X, Yu ZX, Wang YF. Stereoselective hydrogen atom transfer to acyclic radicals: a switch enabling diastereodivergent borylative radical cascades. Nat Commun 2022; 13:426. [PMID: 35058459 PMCID: PMC8776760 DOI: 10.1038/s41467-022-28071-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Radical cascade reactions are powerful tools to construct structurally complex molecules. However, the stereochemical control of acyclic radical intermediates remains a persistent challenge, due to the low differentiation between the two faces of these species. This hurdle further makes stereodivergent synthesis rather more difficult to be accomplished, in particular for intermediates resulted from complex cascades. Here we report an efficient strategy for stereoselective hydrogen atom transfer (HAT) to acyclic carbon radicals, which are generated via N-heterocyclic carbene (NHC)-boryl radicals triggered addition-translocation-cyclization cascades. A synergistic control by the NHC subunit and a thiol catalyst has proved effective for one facial HAT, while a ZnI2-chelation protocol allows for the preferential reaction to the opposite face. Such a stereoselectivity switch enables diastereodivergent construction of heterocycles tethering a boron-substituted stereocenter. Mechanistic studies suggest two complementary ways to tune HAT diastereoselectivity. The stereospecific conversions of the resulting boron-handled products to diverse functionalized molecules are demonstrated.
Collapse
Affiliation(s)
- Tian Ye
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui, China
| | - Feng-Lian Zhang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui, China
| | - Hui-Min Xia
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui, China
| | - Xi Zhou
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, 100871, Beijing, China.
| | - Yi-Feng Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China.
| |
Collapse
|
10
|
Juliá F, Constantin T, Leonori D. Applications of Halogen-Atom Transfer (XAT) for the Generation of Carbon Radicals in Synthetic Photochemistry and Photocatalysis. Chem Rev 2021; 122:2292-2352. [PMID: 34882396 DOI: 10.1021/acs.chemrev.1c00558] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The halogen-atom transfer (XAT) is one of the most important and applied processes for the generation of carbon radicals in synthetic chemistry. In this review, we summarize and highlight the most important aspects associated with XAT and the impact it has had on photochemistry and photocatalysis. The organization of the material starts with the analysis of the most important mechanistic aspects and then follows a subdivision based on the nature of the reagents used in the halogen abstraction. This review aims to provide a general overview of the fundamental concepts and main agents involved in XAT processes with the objective of offering a tool to understand and facilitate the development of new synthetic radical strategies.
Collapse
Affiliation(s)
- Fabio Juliá
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Timothée Constantin
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Daniele Leonori
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
11
|
Kawamoto T, Ryu I. Blacklight‐Induced Hydroxylation of Arylboronic Acids Leading to Hydroxyarenes Using Molecular Oxygen and Tetrabutylammonium Borohydride. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takuji Kawamoto
- Department of Applied Chemistry Yamaguchi University Ube, Yamaguchi 755-8611 Japan
| | - Ilhyong Ryu
- Organization for Research Promotion Osaka Prefecture University Sakai, Osaka 599-8531 Japan
- Department of Applied Chemistry National Yang Ming Chiao Tung University (NYCU) Hsinchu 30010 Taiwan
| |
Collapse
|
12
|
Abstract
Boron-centred radicals (boryl radicals) are potential and attractive species in main group chemistry and synthetic chemistry. Recently, the development of boron compounds ligated by N-heterocyclic carbenes (NHCs) has sparked off advavnces in boryl radical chemistry because NHCs can highly stabilise boryl radicals by electronic and steric factors. This review highlights recent synthesis and reactions of such NHC-boryl radicals. From the standpoint of main group chemistry, examples of isolation or detection of unique NHC-boryl radicals are presented. From the standpoint of synthetic chemistry, on the other hand, the development of reactions of user-friendly NHC-boryl radicals, which has contributed to radical chemistry, organoboron chemistry and polymer science, is comprehensively described.
Collapse
Affiliation(s)
- Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
13
|
Bell JD, Murphy JA. Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chem Soc Rev 2021; 50:9540-9685. [PMID: 34309610 DOI: 10.1039/d1cs00311a] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photoredox chemistry with organic or transition metal agents has been reviewed in earlier years, but such is the pace of progress that we will overlap very little with earlier comprehensive reviews. This review first presents an overview of the area of research and then examines recent examples of C-C, C-N, C-O and C-S bond formations via radical intermediates with transition metal and organic radical promoters. Recent successes with Birch reductions are also included. The transition metal chemistry will be restricted to photocatalysts based on the most widely used metals, Ru and Ir, but includes coupling chemistries that take advantage of low-valent nickel, or occasionally copper, complexes to process the radicals that are formed. Our focus is on developments in the past 10 years (2011-2021). This period has also seen great advances in the chemistry of organic photoredox reagents and the review covers this area. The review is intended to present highlights and is not comprehensive.
Collapse
Affiliation(s)
- Jonathan D Bell
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | | |
Collapse
|
14
|
Abstract
Transition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic compounds, with CO acting as an inexpensive and readily available C1 feedstock. Despite the long history of carbonylation catalysis, including many processes that have been industrialized at bulk scale, there remain several challenges to tackle. For example, noble metals such as Pd, Rh, and Ir are typically used as catalysts for carbonylation reactions, rather than earth-abundant alternatives. Additionally, while carbonylation of C(sp2)-hybridized substrates (e.g., aryl halides) is well-known, carbonylation of unactivated alkyl electrophiles, especially where β-hydride elimination can compete with desired CO migratory insertion at the catalyst site, remains challenging for many systems. Recently, base metal catalysis based on Mn, Co, and other metals has enabled advances in carbonylative coupling of alkyl electrophiles, though the nucleophiles are often limited to alcohols or amines to generate esters or amides as products. Thus, we have targeted base metal-catalyzed carbonylative C-C and C-E (E = N, H, Si, B) coupling reactions as a method for approaching diverse carbonyl compounds of synthetic importance.Initially, we designed a heterobimetallic catalyst platform for carbonylative C-C coupling of alkyl halides with arylboronic esters (i.e., carbonylative Suzuki-Miyaura coupling) to generate aryl alkyl ketones. Subsequently, we developed multicomponent carbonylation reactions of alkyl halides using NHC-Cu catalysts (NHC = N-heterocyclic carbene). These reactions operate by radical mechanisms, converting alkyl halides into either acyl radical or acyl halide intermediates that undergo subsequent C-C or C-E coupling at the Cu site. This mechanistic paradigm is relatively novel in the metal-catalyzed carbonylation area, allowing us to discover a previously unexplored chemical space in carbonylative coupling catalysis. We have successfully developed the following reactions: (a) hydrocarbonylative coupling of alkynes with alkyl halides; (b) borocarbonylative coupling of alkynes with alkyl halides; (c) reductive aminocarbonylation of alkyl halides with nitroarenes; (d) reductive carbonylation of alkyl halides; (e) carbonylative silylation of alkyl halides; (f) carbonylative borylation of alkyl halides. These reactions provide a broad range of valuable products including ketones, allylic alcohols, β-borylenones, amides, alcohols, acylsilanes, and acylborons in an efficient manner. Notably, the preparation of some of these products has previously required multistep syntheses, harsh conditions, or specialized reagents. By contrast, the multicomponent coupling platform that we have developed requires only readily available building blocks and rapidly increases molecular complexity in a single synthetic manipulation.
Collapse
Affiliation(s)
- Li-Jie Cheng
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Neal P. Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
15
|
Liu Y, Li JL, Liu XG, Wu JQ, Huang ZS, Li Q, Wang H. Radical Borylative Cyclization of Isocyanoarenes with N-Heterocyclic Carbene Borane: Synthesis of Borylated Aza-arenes. Org Lett 2021; 23:1891-1897. [PMID: 33591193 DOI: 10.1021/acs.orglett.1c00309] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Borylated aza-arenes are of great importance in the area of organic synthesis. A radical borylative cyclization of isocyanoarenes with N-heterocyclic carbene borane (NHC-BH3) under metal-free conditions was developed. The reaction allows the efficient assembly of several types of borylated aza-arenes (phenanthridines, benzothiazoles, etc.), which are difficult to access using alternative methods. Mild reaction conditions, a good functional-group tolerance, and generally good efficiencies were observed. The utility of these products is demonstrated, and the mechanism is discussed.
Collapse
Affiliation(s)
- Yao Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ji-Lin Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xu-Ge Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Qiang Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingjiang Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Honggen Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
16
|
Ayyappan R, Coppel Y, Vendier L, Ghosh S, Sabo-Etienne S, Bontemps S. Synthesis and reactivity of phosphine borohydride compounds. Chem Commun (Camb) 2021; 57:375-378. [PMID: 33325466 DOI: 10.1039/d0cc07072f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four lithium phosphine borohydride compounds featuring phenyl and naphthyl linkers have been synthesized. In-depth NMR analysis affords evidence for non-bonded through space P-B coupling. Reactivity towards CO2 leads to LiH transfer and to the quantitative formation of the corresponding ambiphilic phosphine-borane products.
Collapse
Affiliation(s)
- Ramaraj Ayyappan
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 04, France.
| | | | | | | | | | | |
Collapse
|
17
|
Gui J, Cai X, Chen L, Zhou Y, Zhu W, Jiang Y, Hu M, Chen X, Hu Y, Zhang S. Facile and practical hydrodehalogenations of organic halides enabled by calcium hydride and palladium chloride. Org Chem Front 2021. [DOI: 10.1039/d1qo00758k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
For the first time, calcium hydride and palladium chloride were used to reduce a wide range of organic halides including aromatic bromides, aromatic chlorides, aromatic triflates, aliphatic bromides, aliphatic chlorides and trihalomethyl compounds.
Collapse
Affiliation(s)
- Jingjing Gui
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P.R. China
| | - Xin Cai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P.R. China
| | - Lingyun Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P.R. China
| | - Yuxin Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P.R. China
| | - Wenjing Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P.R. China
| | - Yuanrui Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P.R. China
| | - Min Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P.R. China
| | - Xiaobei Chen
- State Key Laboratory of Bioreactor Engineering, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, P.R. China
| | - Yanwei Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P.R. China
| | - Shilei Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P.R. China
| |
Collapse
|
18
|
Bugaenko DI, Volkov AA, Karchava AV, Yurovskaya MA. Generation of aryl radicals by redox processes. Recent progress in the arylation methodology. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arylation methods based on the generation and use of aryl radicals have been a rapidly growing field of research in recent years and currently represent a powerful strategy for carbon – carbon and carbon – heteroatom bond formation. The progress in this field is related to advances in the methods for generation of aryl radicals. The currently used aryl radical precursors include aryl halides, aryldiazonium and diaryliodonium salts, arylcarboxylic acids and their derivatives, arylboronic acids, arylhydrazines, organosulfur(II, VI) compounds and some other compounds. Aryl radicals are generated under mild conditions by single electron reduction or oxidation of precursors induced by conventional reagents, visible light or electric current. A crucial role in the development of the radical arylation methodology belongs to photoredox processes either catalyzed by transition metal complexes or organic dyes or proceeding without catalysts. Unlike the conventional transition metal-catalyzed arylation methods, radical arylation reactions proceed very often at room temperature and have high functional group tolerance. Without claiming to be exhaustive, this review covers the most important advances of the current decade in the generation and synthetic applications of (het)aryl radicals. Examples of reactions are given and mechanistic insights are highlighted.
The bibliography includes 341 references.
Collapse
|
19
|
Abstract
A general method for the hydroalkylation of electron-rich terminal and non-terminal alkenes such as enol esters, alkenyl sulfides, enol ethers, silyl enol ethers, enamides and enecarbamates has been developed. The reactions are carried out at room temperature under air initiation in the presence of triethylborane acting as a chain transfer reagent and 4-tert-butylcatechol (TBC) as a source of hydrogen atom. The efficacy of the reaction is best explained by very favorable polar effects supporting the chain process and minimizing undesired polar reactions. The stereoselective hydroalkylation of chiral N-(alk-1-en-1-yl)oxazolidin-2-ones takes place with good to excellent diastereocontrol. Giese reaction not anymore limited to electron poor alkenes! A general method for the radical mediated hydroalkylation of electron rich alkenes including enol ethers, silylenolethers, enamides, and enecarbamates has been developed.![]()
Collapse
Affiliation(s)
- Qi Huang
- Department of Chemistry and Biochemistry, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Sankar Rao Suravarapu
- Department of Chemistry and Biochemistry, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Philippe Renaud
- Department of Chemistry and Biochemistry, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| |
Collapse
|
20
|
Behera N, Sethi S. Unprecedented Catalytic Behavior of Uranyl(VI) Compounds in Chemical Reactions. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Nabakrushna Behera
- School of Chemistry Sambalpur University Jyoti Vihar – 768019 Sambalpur Odisha India
| | - Sipun Sethi
- School of Chemistry Sambalpur University Jyoti Vihar – 768019 Sambalpur Odisha India
| |
Collapse
|
21
|
Chilamari M, Immel JR, Bloom S. General Access to C-Centered Radicals: Combining a Bioinspired Photocatalyst with Boronic Acids in Aqueous Media. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03422] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Jacob R. Immel
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
22
|
Crespi S, Fagnoni M. Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chem Rev 2020; 120:9790-9833. [PMID: 32786419 PMCID: PMC8009483 DOI: 10.1021/acs.chemrev.0c00278] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 01/09/2023]
Abstract
Alkyl radicals are key intermediates in organic synthesis. Their classic generation from alkyl halides has a severe drawback due to the employment of toxic tin hydrides to the point that "flight from the tyranny of tin" in radical processes was considered for a long time an unavoidable issue. This review summarizes the main alternative approaches for the generation of unstabilized alkyl radicals, using photons as traceless promoters. The recent development in photochemical and photocatalyzed processes enabled the discovery of a plethora of new alkyl radical precursors, opening the world of radical chemistry to a broader community, thus allowing a new era of photon democracy.
Collapse
Affiliation(s)
- Stefano Crespi
- Stratingh
Institute for Chemistry, Center for Systems
Chemistry University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, V. Le Taramelli 10, 27100 Pavia, Italy
| |
Collapse
|
23
|
Ding TH, Qu JP, Kang YB. Visible-Light-Induced, Base-Promoted Transition-Metal-Free Dehalogenation of Aryl Fluorides, Chlorides, Bromides, and Iodides. Org Lett 2020; 22:3084-3088. [DOI: 10.1021/acs.orglett.0c00827] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ting-Hui Ding
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
24
|
Zubkov MO, Kosobokov MD, Levin VV, Kokorekin VA, Korlyukov AA, Hu J, Dilman AD. A novel photoredox-active group for the generation of fluorinated radicals from difluorostyrenes. Chem Sci 2019; 11:737-741. [PMID: 34123046 PMCID: PMC8146146 DOI: 10.1039/c9sc04643g] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A 4-tetrafluoropyridinylthio group was suggested as a new photoredox-active moiety. The group can be directly installed on difluorostyrenes in a single step by the thiolene click reaction. It proceeds upon visible light catalysis with 9-phenylacridine providing various difluorinated sulfides as radical precursors. Single electron reduction of the C–S bond with the formation of fluoroalkyl radicals is enabled by the electron-poor azine ring. The intermediate difluorinated sulfides were involved in a series of photoredox reactions with silyl enol ethers, alkenes, nitrones and an alkenyl trifluoroborate. A new photoredox-active group was applied for the generation of fluorinated radicals from difluorostyrenes under blue light irradiation.![]()
Collapse
Affiliation(s)
- Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russia .,Higher Chemical College, D. Mendeleev University of Chemical Technology of Russia 9 Miusskaya sq. 125047 Moscow Russia
| | - Mikhail D Kosobokov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russia
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russia
| | - Vladimir A Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russia .,I. M. Sechenov First Moscow State Medical University 8-2 Trubetskaya st. 119991 Moscow Russia
| | - Alexander A Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences 28 Vavilova st. 119991 Moscow Russia.,Pirogov Russian National Research Medical University 1 Ostrovitianov st. 117997 Moscow Russia
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Ling-Ling Road 200032 Shanghai China
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russia
| |
Collapse
|
25
|
Photocatalytic activation of alkyl chlorides by assembly-promoted single electron transfer in microheterogeneous solutions. Nat Catal 2019. [DOI: 10.1038/s41929-019-0369-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
26
|
Affiliation(s)
- Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology; Kanazawa University; Kakuma-machi 920-1192 Kanazawa Japan
| |
Collapse
|
27
|
Jia WG, Cheng MX, Gao LL, Tan SM, Wang C, Liu X, Lee R. A ruthenium bisoxazoline complex as a photoredox catalyst for nitro compound reduction under visible light. Dalton Trans 2019; 48:9949-9953. [PMID: 31237588 DOI: 10.1039/c9dt00428a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An unreported ruthenium(ii) complex containing bisoxazoline ligands has been synthesized and characterized. To test the catalytic ability of the ruthenium complex, the synthesis of anilines from nitro compounds in the presence of a mild reducing agent sodium borohydride and visible light has been developed. Mechanistic studies involving the experiment and DFT calculations suggest that the reaction could involve a radical pathway with the assistance of a photoredox catalyst.
Collapse
Affiliation(s)
- Wei-Guo Jia
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Ming-Xia Cheng
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Li-Li Gao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Siu Min Tan
- Science and Mathematics Cluster, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372.
| | - Chao Wang
- Science and Mathematics Cluster, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372.
| | - Xiaogang Liu
- Science and Mathematics Cluster, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372.
| | - Richmond Lee
- Science and Mathematics Cluster, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372.
| |
Collapse
|
28
|
Garrido-Castro AF, Salaverri N, Maestro MC, Alemán J. Intramolecular Homolytic Substitution Enabled by Photoredox Catalysis: Sulfur, Phosphorus, and Silicon Heterocycle Synthesis from Aryl Halides. Org Lett 2019; 21:5295-5300. [DOI: 10.1021/acs.orglett.9b01911] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Noelia Salaverri
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - M. Carmen Maestro
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - José Alemán
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
29
|
Sumino S, Ryu I. Alkenylation and Allylation Reactions of Alkyl Halides Using Photo Catalyst. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuhei Sumino
- Department of Chemistry, Osaka Prefecture University
| | - Ilhyong Ryu
- Department of Chemistry, Osaka Prefecture University
- Department of Applied Chemistry, National Chiao Tung University
| |
Collapse
|
30
|
Voreakos K, Devel L, Georgiadis D. Late-Stage Diversification of Phosphinic Dehydroalanine Pseudopeptides Based on a Giese-Type Radical C-Alkylation Strategy. Org Lett 2019; 21:4397-4401. [PMID: 30933530 DOI: 10.1021/acs.orglett.9b00857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A straightforward, late-stage diversification strategy for the installation of side chains on readily accessible unsaturated phosphinopeptidic scaffolds based on a Giese-type addition of alkyl radicals has been investigated. Among different alternatives, the preferred methodology is operationally simple as it can be carried out in an open flask with no need for protection of acidic moieties. Direct application to the synthesis of SPPS-compatible building blocks or to longer peptides is also reported.
Collapse
Affiliation(s)
- Kostas Voreakos
- Department of Chemistry, Laboratory of Organic Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis, Zografou , 15771 Athens , Greece
| | - Laurent Devel
- CEA, Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO) , Université Paris-Saclay , Gif-sur-Yvette 91190 , France
| | - Dimitris Georgiadis
- Department of Chemistry, Laboratory of Organic Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis, Zografou , 15771 Athens , Greece
| |
Collapse
|
31
|
Dmitriev IA, Supranovich VI, Levin VV, Dilman AD. Reductive Bromodifluoromethylation of Nitrones Promoted by Visible Light. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Igor A. Dmitriev
- N. D. Zelinsky Institute of Organic Chemistry; 119991 Moscow Leninsky prosp. 47 Russian Federation
- Moscow State University; Department of Chemistry; 119991 Moscow Leninskie Gory 1-3 Russian Federation
| | | | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry; 119991 Moscow Leninsky prosp. 47 Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry; 119991 Moscow Leninsky prosp. 47 Russian Federation
| |
Collapse
|
32
|
Cao D, Yan C, Zhou P, Zeng H, Li CJ. Hydrogen bonding promoted simple and clean photo-induced reduction of C–X bond with isopropanol. Chem Commun (Camb) 2019; 55:767-770. [DOI: 10.1039/c8cc08942f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein report a simple and clean photo-induced metal-free reduction of C–X bond under an atmosphere of air at room temperature.
Collapse
Affiliation(s)
- Dawei Cao
- The State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou
- P. R. China
- College of Chemistry and Chemical Engineering
| | - Chaoxian Yan
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| | - Panpan Zhou
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou
- P. R. China
- College of Chemistry and Chemical Engineering
| | - Chao-Jun Li
- The State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou
- P. R. China
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis
| |
Collapse
|
33
|
Zhou ZZ, Zhao JH, Gou XY, Chen XM, Liang YM. Visible-light-mediated hydrodehalogenation and Br/D exchange of inactivated aryl and alkyl halides with a palladium complex. Org Chem Front 2019. [DOI: 10.1039/c9qo00240e] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photo-induced radical reductive dehalogenation of inactivated aryl/alkyl bromides and chlorides with a palladium complex is described. Reductive cyclization, dehalogenative deuteration, and radical addition process can be achieved smoothly.
Collapse
Affiliation(s)
- Zhao-Zhao Zhou
- School of Nuclear Science and Technology, Lanzhou University
- Lanzhou, 730000
- P.R. China
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
| | - Jia-Hui Zhao
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou, 730000
- P.R. China
| | - Xue-Ya Gou
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou, 730000
- P.R. China
| | - Xi-Meng Chen
- School of Nuclear Science and Technology, Lanzhou University
- Lanzhou, 730000
- P.R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou, 730000
- P.R. China
| |
Collapse
|
34
|
Yin Z, Rabeah J, Brückner A, Wu XF. Gallic Acid-Promoted SET Process for Cyclobutanone Oximes Activation and (Carbonylative-)Alkylation of Olefins. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03576] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Zhiping Yin
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Angelika Brückner
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
35
|
Yang W, Chen C, Chan KS. Hydrodebromination of allylic and benzylic bromides with water catalyzed by a rhodium porphyrin complex. Dalton Trans 2018; 47:12879-12883. [PMID: 30168570 DOI: 10.1039/c8dt02168f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrodebromination of allylic and benzylic bromides was successfully achieved by a rhodium porphyrin complex catalyst using water as the hydrogen source without a sacrificial reductant. Mechanistic investigations suggest that bromine atom abstraction via a rhodium porphyrin metalloradical operates to give the rhodium porphyrin alkyl species and the subsequent hydrolysis of the rhodium porphyrin alkyl species to a hydrocarbon product is a key step to harness the hydrogen from water.
Collapse
Affiliation(s)
- Wu Yang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China.
| | | | | |
Collapse
|
36
|
Supranovich VI, Levin VV, Struchkova MI, Hu J, Dilman AD. Visible light-mediated difluoroalkylation of electron-deficient alkenes. Beilstein J Org Chem 2018; 14:1637-1641. [PMID: 30013689 PMCID: PMC6036985 DOI: 10.3762/bjoc.14.139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
Abstract
A method for the reductive difluoroalkylation of electron-deficient alkenes using 1,1-difluorinated iodides mediated by irradiation with blue light is described. The reaction involves radical addition of 1,1-difluorinated radicals at the double bond followed by hydrogen atom transfer from sodium cyanoborohydride.
Collapse
Affiliation(s)
- Vyacheslav I Supranovich
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Marina I Struchkova
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
37
|
Kumar D, Singh AS, Tiwari VK. An Improved Synthetic Protocol for Benzothiazoles via Ring Opening of Benzotriazole. ChemistrySelect 2018. [DOI: 10.1002/slct.201801241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dhananjay Kumar
- Department of ChemistryInstitute of ScienceBanaras Hindu University, Varanasi Uttar Pradesh-221005 India
- Department of ChemistryAnugrah Memorial CollegeMagadh University Gaya-110007 India
| | - Anoop S. Singh
- Department of ChemistryInstitute of ScienceBanaras Hindu University, Varanasi Uttar Pradesh-221005 India
| | - Vinod K. Tiwari
- Department of ChemistryInstitute of ScienceBanaras Hindu University, Varanasi Uttar Pradesh-221005 India
| |
Collapse
|
38
|
Tappin NDC, Gnägi-Lux M, Renaud P. Radical-Triggered Three-Component Coupling Reaction of Alkenylboronates, α-Halocarbonyl Compounds, and Organolithium Reagents: The Inverse Ylid Mechanism. Chemistry 2018; 24:11498-11502. [PMID: 29877598 DOI: 10.1002/chem.201802384] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/06/2018] [Indexed: 11/05/2022]
Abstract
An operationally simple protocol to affect a radical addition to alkenylboronates that spontaneously undergo a [1,2]-metalate shift is described. Overall, the reaction is a three-component coupling of an organolithium, alkenylboronic ester, and halide which takes place with broad scope and good to excellent yields. Experimental mechanistic investigations support the formation of a boron inverse ylid intermediate.
Collapse
Affiliation(s)
- Nicholas D C Tappin
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Manuel Gnägi-Lux
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Philippe Renaud
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
39
|
Hayashi H, Kaga A, Wang B, Gagosz F, Chiba S. Use of a benzyl ether as a traceless hydrogen donor in the anti-Markovnikov hydrofunctionalization of alkenes with xanthates. Chem Commun (Camb) 2018; 54:7535-7538. [PMID: 29926014 DOI: 10.1039/c8cc02971g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new protocol for the anti-Markovnikov hydrofunctionalization of alkenyl alcohol O-Bn ethers was developed using xanthates as functionalizing agents in the presence of lauroyl peroxide as a radical initiator and a stoichiometric oxidant. The benzyl group serves as a traceless hydrogen donor in the remote radical hydrogen atom transfer event during the process.
Collapse
Affiliation(s)
- Hirohito Hayashi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| | | | | | | | | |
Collapse
|
40
|
Shimoi M, Watanabe T, Maeda K, Curran DP, Taniguchi T. Radical trans-Hydroboration of Alkynes with N-Heterocyclic Carbene Boranes. Angew Chem Int Ed Engl 2018; 57:9485-9490. [PMID: 29845716 DOI: 10.1002/anie.201804515] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/28/2018] [Indexed: 01/06/2023]
Abstract
Hydroboration of internal alkynes with N-heterocyclic carbene boranes (NHC-boranes) occurs to provide stable NHC (E)-alkenylboranes upon thermolysis in the presence of di-tert-butyl peroxide. The E isomer results from an unusual trans-hydroboration, and the E/Z selectivity is typically high (90:10 or greater). Evidence suggests that this hydroboration occurs by a radical-chain reaction involving addition of an NHC-boryl radical to an alkyne to give a β-NHC-borylalkenyl radical. Ensuing hydrogen abstraction from the starting NHC-borane provides the product and returns the starting NHC-boryl radical. Experiments suggest that the observed trans-selectivity results from kinetic control in the hydrogen-transfer reaction.
Collapse
Affiliation(s)
- Masaki Shimoi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takashi Watanabe
- School of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Dennis P Curran
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.,School of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
41
|
Shimoi M, Watanabe T, Maeda K, Curran DP, Taniguchi T. Radical trans
-Hydroboration of Alkynes with N-Heterocyclic Carbene Boranes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804515] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Masaki Shimoi
- Graduate School of Natural Science and Technology; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
| | - Takashi Watanabe
- School of Pharmaceutical Sciences; Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
- Nano Life Science Institute (WPI-NanoLSI); Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
| | - Dennis P. Curran
- Department of Chemistry; University of Pittsburgh; Pittsburgh PA 15260 USA
| | - Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
- School of Pharmaceutical Sciences; Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
42
|
Coussanes G, Jakobi H, Lindell S, Bonjoch J. Synthesis of α-Chlorolactams by Cyanoborohydride-Mediated Radical Cyclization of Trichloroacetamides. Chemistry 2018; 24:8151-8156. [PMID: 29603478 DOI: 10.1002/chem.201800210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Indexed: 12/30/2022]
Abstract
A cyanoborohydride-promoted radical cyclization methodology has been developed to access α-chlorolactams in a simple and efficient way using NaBH3 CN and trichloroacetamides easily available from allylic and homoallylic secondary amines. This methodology allowed the synthesis of a library of α-chlorolactams (mono- and bicyclic), which were tested for herbicidal activity, trans-3-chloro-4-methyl-1-(3-trifluoromethyl)phenyl-2-pyrrolidinone being the most active.
Collapse
Affiliation(s)
- Guilhem Coussanes
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028, Barcelona, Spain
| | - Harald Jakobi
- Bayer AG, Crop Science Division, Industriepark Höchst G836, 65926, Frankfurt am Main, Germany
| | - Stephen Lindell
- Bayer AG, Crop Science Division, Industriepark Höchst G836, 65926, Frankfurt am Main, Germany
| | - Josep Bonjoch
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028, Barcelona, Spain
| |
Collapse
|
43
|
Fukuyama T, Fujita Y, Miyoshi H, Ryu I, Kao SC, Wu YK. Electron transfer-induced reduction of organic halides with amines. Chem Commun (Camb) 2018; 54:5582-5585. [PMID: 29766164 DOI: 10.1039/c8cc02445f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction of a variety of organo halides was examined by using amines as a sacrificial hydrogen source. UV light-induced reduction of vinyl and aryl halides with triethylamine proceeded smoothly to give the corresponding reduced products. High temperature heating also caused the reduction and DABCO (1,4-diazabicyclo[2.2.2]octane) also served as a good reducing reagent.
Collapse
Affiliation(s)
- Takahide Fukuyama
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Isegawa M, Sharma AK, Ogo S, Morokuma K. DFT Study on Fe(IV)-Peroxo Formation and H Atom Transfer Triggered O2 Activation by NiFe Complex. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miho Isegawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Moto-oka, Nishi-ku, Fukuoka 819-0385, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Akhilesh K. Sharma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Seiji Ogo
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Moto-oka, Nishi-ku, Fukuoka 819-0385, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
45
|
|
46
|
Kawamoto T, Oritani K, Curran DP, Kamimura A. Thiol-Catalyzed Radical Decyanation of Aliphatic Nitriles with Sodium Borohydride. Org Lett 2018. [DOI: 10.1021/acs.orglett.8b00626] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Takuji Kawamoto
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Kyohei Oritani
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Dennis P. Curran
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Akio Kamimura
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| |
Collapse
|
47
|
Takao K, Tsushima S. The oxidation of borohydrides by photoexcited [UO2(CO3)3]4−. Dalton Trans 2018; 47:5149-5152. [DOI: 10.1039/c8dt00559a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photochemistry of [UVIO2(CO3)3]4− has not been well-explored because of its barely luminescent nature. Herein, we have demonstrated the oxidation of borohydrides by photoexcited [UVIO2(CO3)3]4−.
Collapse
Affiliation(s)
- Koichiro Takao
- Laboratory for Advanced Nuclear Energy
- Institute of Innovative Research
- Tokyo Institute of Technology
- 152-8550 Tokyo
- Japan
| | - Satoru Tsushima
- Tokyo Tech World Research Hub Initiative (WRHI)
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
- Institute of Resource Ecology
| |
Collapse
|
48
|
Watanabe T, Geib SJ, Curran DP, Taniguchi T. N-Heterocyclic Carbene Boranes are Hydrogen Donors in Masamune-Bergman Reactions of Benzo[3,4]cyclodec-3-ene-1,5-diynes. J Org Chem 2017; 82:13034-13042. [PMID: 29120175 DOI: 10.1021/acs.joc.7b01981] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thermal reactions of benzo[3,4]cyclodec-3-ene-1,5-diyne with N-heterocyclic carbene boranes (NHC-boranes) provided mixtures of 9-borylated 1,2,3,4-tetrahydroanthracenes along with 1,2,3,4-tetrahydroanthracene. These products indicate that NHC-boranes serve as hydrogen donors to a p-benzyne intermediate formed by the Masamune-Bergman reaction. Experimental results support a radical mechanism in nonpolar solvents, but suggest that ionic mechanisms compete in the production of 1,2,3,4-tetrahydroanthracene when the reaction is performed in a polar solvent.
Collapse
Affiliation(s)
- Takashi Watanabe
- School of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Steven J Geib
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Dennis P Curran
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Tsuyoshi Taniguchi
- School of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
49
|
Desage-El Murr M, Fensterbank L, Ollivier C. Iron and Single Electron Transfer: All is in the Ligand. Isr J Chem 2017. [DOI: 10.1002/ijch.201700061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marine Desage-El Murr
- Sorbonne Universités; UPMC Univ Paris 06, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire; 4, place Jussieu 75252 Paris cedex 05 France
| | - Louis Fensterbank
- Sorbonne Universités; UPMC Univ Paris 06, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire; 4, place Jussieu 75252 Paris cedex 05 France
| | - Cyril Ollivier
- Sorbonne Universités; UPMC Univ Paris 06, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire; 4, place Jussieu 75252 Paris cedex 05 France
| |
Collapse
|
50
|
Jin K, Li T, Chow HY, Liu H, Li X. P-B Desulfurization: An Enabling Method for Protein Chemical Synthesis and Site-Specific Deuteration. Angew Chem Int Ed Engl 2017; 56:14607-14611. [PMID: 28971554 DOI: 10.1002/anie.201709097] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 09/28/2017] [Indexed: 12/13/2022]
Abstract
Cysteine-mediated native chemical ligation is a powerful method for protein chemical synthesis. Herein, we report an unprecedentedly mild system (TCEP/NaBH4 or TCEP/LiBEt3 H; TCEP=tris(2-carboxyethyl)phosphine) for chemoselective peptide desulfurization to achieve effective protein synthesis via the native chemical ligation-desulfurization approach. This method, termed P-B desulfurization, features usage of common reagents, simplicity of operation, robustness, high yields, clean conversion, and versatile functionality compatibility with complex peptides/proteins. In addition, this method can be used for incorporating deuterium into the peptides after cysteine desulfurization by running the reaction in D2 O buffer. Moreover, this method enables the clean desulfurization of peptides carrying post-translational modifications, such as phosphorylation and crotonylation. The effectiveness of this method has been demonstrated by the synthesis of the cyclic peptides dichotomin C and E and synthetic proteins, including ubiquitin, γ-synuclein, and histone H2A.
Collapse
Affiliation(s)
- Kang Jin
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Tianlu Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Hoi Yee Chow
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| |
Collapse
|