1
|
Gay M, Diaz-Lobo M, Gusi-Vives M, Arauz-Garofalo G, Vilanova M, Giralt E, Vilaseca M, Guardiola S. Proteomic tools for the quantitative analysis of artificial peptide libraries: detection and characterization of target-amplified PD-1 inhibitors. Chembiochem 2022; 23:e202200152. [PMID: 35362647 DOI: 10.1002/cbic.202200152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/31/2022] [Indexed: 11/07/2022]
Abstract
We report a quantitative proteomics data analysis pipeline which, coupled to protein-directed dynamic combinatorial chemistry (DDC) experiments, enables the rapid discovery and direct characterization of protein-protein interaction (PPI) modulators. A low-affinity PD-1 binder was incubated with a library of >100 D-peptides under thiol-exchange favoring conditions, in the presence of the target protein PD-1, and we determined the S-linked dimeric species that resulted amplified in the protein samples versus the controls. We chemically synthesized the target dimer candidates and validated them by thermophoresis binding and protein-protein interaction assays. The results provide a proof-of-concept for using this strategy in the high-throughput search of improved drug-like peptide binders that block therapeutically relevant protein-protein interactions.
Collapse
Affiliation(s)
- Marina Gay
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Mass Spectrometry Core Facility, SPAIN
| | - Mireia Diaz-Lobo
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Mass Spectrometry Core Facility, SPAIN
| | - Mar Gusi-Vives
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Pharmacology, SPAIN
| | - Gianluca Arauz-Garofalo
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Mass Spectrometry Core Facility, SPAIN
| | - Mar Vilanova
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, mas, SPAIN
| | - Ernest Giralt
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Pharmacology, SPAIN
| | - Marta Vilaseca
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Mass Spectrometry Core Facility, SPAIN
| | - Salvador Guardiola
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Pharmacology, Baldiri Reixac, 4, 08028, Barcelona, SPAIN
| |
Collapse
|
2
|
Rösler TW, Costa M, Höglinger GU. Disease-modifying strategies in primary tauopathies. Neuropharmacology 2019; 167:107842. [PMID: 31704274 DOI: 10.1016/j.neuropharm.2019.107842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022]
Abstract
Tauopathies are neurodegenerative brain diseases that are characterized by the formation of intraneuronal inclusions containing the microtubule-associated protein tau. This major hallmark defines tau pathology which is predominant in primary tauopathies, while in secondary forms additional driving forces are involved. In the course of the disease, different brain areas degenerate and lead to severe defects of language, behavior and movement. Although neuropathologically heterogeneous, primary tauopathies share a common feature, which is the generation of abnormal tau species that aggregate and progress into filamentous deposits in neurons. Mechanisms that are involved in this disease-related process offer a broad range of targets for disease-modifying therapeutics. The present review provides an up-to-date overview of currently known targets in primary tauopathies and their possible therapeutic modulation. It is structured into four major targets, the post-translational modifications of tau and tau aggregation, protein homeostasis, disease propagation, and tau genetics. Chances, as well as obstacles in the development of effective therapies are highlighted. Some therapeutic strategies, e.g., passive or active immunization, have already reached clinical development, raising hopes for affected patients. Other concepts, e.g., distinct modulators of proteostasis, are at the ready to be developed into promising future therapies. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Thomas W Rösler
- School of Medicine, Technical University of Munich, 81675, Munich, Germany; Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
| | - Márcia Costa
- School of Medicine, Technical University of Munich, 81675, Munich, Germany; Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
| | - Günter U Höglinger
- School of Medicine, Technical University of Munich, 81675, Munich, Germany; Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany; Department of Neurology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
3
|
Rösler TW, Tayaranian Marvian A, Brendel M, Nykänen NP, Höllerhage M, Schwarz SC, Hopfner F, Koeglsperger T, Respondek G, Schweyer K, Levin J, Villemagne VL, Barthel H, Sabri O, Müller U, Meissner WG, Kovacs GG, Höglinger GU. Four-repeat tauopathies. Prog Neurobiol 2019; 180:101644. [PMID: 31238088 DOI: 10.1016/j.pneurobio.2019.101644] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023]
Abstract
Tau is a microtubule-associated protein with versatile functions in the dynamic assembly of the neuronal cytoskeleton. Four-repeat (4R-) tauopathies are a group of neurodegenerative diseases defined by cytoplasmic inclusions predominantly composed of tau protein isoforms with four microtubule-binding domains. Progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease or glial globular tauopathy belong to the group of 4R-tauopathies. The present review provides an introduction in the current concept of 4R-tauopathies, including an overview of the neuropathological and clinical spectrum of these diseases. It describes the genetic and environmental etiological factors, as well as the contemporary knowledge about the pathophysiological mechanisms, including post-translational modifications, aggregation and fragmentation of tau, as well as the role of protein degradation mechanisms. Furthermore, current theories about disease propagation are discussed, involving different extracellular tau species and their cellular release and uptake mechanisms. Finally, molecular diagnostic tools for 4R-tauopathies, including tau-PET and fluid biomarkers, and investigational therapeutic strategies are presented. In summary, we report on 4R-tauopathies as overarching disease concept based on a shared pathophysiological concept, and highlight the challenges and opportunities on the way towards a causal therapy.
Collapse
Affiliation(s)
- Thomas W Rösler
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Amir Tayaranian Marvian
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Matthias Brendel
- Dept. of Nuclear Medicine, University of Munich, 81377 Munich, Germany
| | - Niko-Petteri Nykänen
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Matthias Höllerhage
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Sigrid C Schwarz
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | - Thomas Koeglsperger
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Gesine Respondek
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Kerstin Schweyer
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Johannes Levin
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Victor L Villemagne
- Dept. of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, 3084, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia; Dept. of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | - Henryk Barthel
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Osama Sabri
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Ulrich Müller
- Institute for Human Genetics, University of Giessen, 35392 Giessen, Germany
| | - Wassilios G Meissner
- Service de Neurologie, CHU Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Dept. of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, 1090 Vienna, Austria; Dept. of Laboratory Medicine and Pathobiology, University of Toronto, Laboratory Medicine Program, University Health Network, Toronto, Canada; Tanz Centre for Research in Neurodegenerative Disease, Krembil Brain Institute, Toronto, Canada
| | - Günter U Höglinger
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; Dept. of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
5
|
Tan J, Yang L, Ong AAL, Shi J, Zhong Z, Lye ML, Liu S, Lisowiec-Wachnicka J, Kierzek R, Roca X, Chen G. A Disease-Causing Intronic Point Mutation C19G Alters Tau Exon 10 Splicing via RNA Secondary Structure Rearrangement. Biochemistry 2019; 58:1565-1578. [DOI: 10.1021/acs.biochem.9b00001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiazi Tan
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Lixia Yang
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Alan Ann Lerk Ong
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Jiahao Shi
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Zhensheng Zhong
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Mun Leng Lye
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Shiyi Liu
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Jolanta Lisowiec-Wachnicka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Gang Chen
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| |
Collapse
|
6
|
Abstract
RNAs adopt diverse folded structures that are essential for function and thus play critical roles in cellular biology. A striking example of this is the ribosome, a complex, three-dimensionally folded macromolecular machine that orchestrates protein synthesis. Advances in RNA biochemistry, structural and molecular biology, and bioinformatics have revealed other non-coding RNAs whose functions are dictated by their structure. It is not surprising that aberrantly folded RNA structures contribute to disease. In this Review, we provide a brief introduction into RNA structural biology and then describe how RNA structures function in cells and cause or contribute to neurological disease. Finally, we highlight successful applications of rational design principles to provide chemical probes and lead compounds targeting structured RNAs. Based on several examples of well-characterized RNA-driven neurological disorders, we demonstrate how designed small molecules can facilitate the study of RNA dysfunction, elucidating previously unknown roles for RNA in disease, and provide lead therapeutics.
Collapse
Affiliation(s)
- Viachaslau Bernat
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
7
|
Artigas G, Marchán V. Synthesis and tau RNA binding evaluation of ametantrone-containing ligands. J Org Chem 2015; 80:2155-64. [PMID: 25602935 DOI: 10.1021/jo502661j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We describe the synthesis and characterization of ametantrone-containing RNA ligands based on the derivatization of this intercalator with two neamine moieties (Amt-Nea,Nea) or with one azaquinolone heterocycle and one neamine (Amt-Nea,Azq) as well as its combination with guanidinoneamine (Amt-NeaG4). Biophysical studies revealed that guanidinylation of the parent ligand (Amt-Nea) had a positive effect on the binding of the resulting compound for Tau pre-mRNA target as well as on the stabilization upon complexation of some of the mutated RNA sequences associated with the development of tauopathies. Further studies by NMR revealed the existence of a preferred binding site in the stem-loop structure, in which ametantrone intercalates in the characteristic bulged region. Regarding doubly-functionalized ligands, binding affinity and stabilizing ability of Amt-Nea,Nea were similar to those of the guanidinylated ligand, but the two aminoglycoside fragments seem to interfere with its accommodation in a single binding site. However, Amt-Nea,Azq binds at the bulged region in a similar way than Amt-NeaG4. Overall, these results provide new insights on fine-tuning RNA binding properties of ametantrone by single or double derivatization with other RNA recognition motifs, which could help in the future design of new ligands with improved selectivity for disease-causing RNA molecules.
Collapse
Affiliation(s)
- Gerard Artigas
- Departament de Química Orgànica and IBUB, Universitat de Barcelona , Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | | |
Collapse
|