Merland T, Drou C, Legoupy S, Benyahia L, Schmutz M, Nicolai T, Chassenieux C. Self-Assembly in water of C
60 fullerene into isotropic nanoparticles or nanoplatelets mediated by a cationic amphiphilic polymer.
J Colloid Interface Sci 2022;
624:537-545. [PMID:
35679641 DOI:
10.1016/j.jcis.2022.05.113]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
HYPOTHESIS
To disperse high concentration of C60 fullerene in water, we propose to use an emulsification-evaporation process in the presence of an amphiphilic polymer whose chemical structure has been chosen for inducing specific interaction with fullerene The viscosity enhancement provided by self-assembly of the amphiphilic polymers in water should result in high stability of the suspensions. The organic solvent has also to been chosen so as to maximize the initial fullerene concentration.
EXPERIMENTS
The concentrations of polymer and fullerene, the solvent type and the volume fraction of the organic phase have been varied. Their influence on the concentration of the fullerene dispersions and on the size and shape of the resulting nanoparticles have been investigated by UV-Visible spectroscopy, light scattering and cryo-transmission electron microscopy experiments.
FINDINGS
The resulting nanoparticles consist of aggregates of C60 fullerene stabilized by the cationic polymer with morphologies/sizes tunable through fullerene and polymer concentration. At high fullerene concentration, nanoplatelets are obtained that consist in thin 2D nanocrystals. Their suspensions are very stable with time due to the viscosity of the dispersing aqueous medium. The concentration of fullerene nanoparticles dispersed in water is as high as 8 g/L which corresponds to an upper limit that has never been reached so far.
Collapse