1
|
Smith K, Holland AM, Woodhead JS, El-Hiti GA. Synthesis of 9-(substituted phenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonates: Effects of the leaving group on chemiluminescent properties. LUMINESCENCE 2024; 39:e4794. [PMID: 38887175 DOI: 10.1002/bio.4794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Various 9-(substituted phenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonates possessing electron-withdrawing substituents have been synthesized. The effect of substituents on the stability of the acridinium esters (AEs) at various temperatures in different buffers and the chemiluminescent properties have been examined. There was little correlation between the chemiluminescent properties of AEs and the pKa values of their associated phenols, but the steric effects of the ortho-substituents in the phenoxy group, as well as their electron-withdrawing natures, seem to play an important role in determining the properties. In general, when two identical substituents are present in the 2- and 6-positions, the compound is significantly more stable than when only a single substituent is present, presumably because of greater steric hindrance from the second group. The exception is the 2,6-difluorophenyl ester, which is less stable than the 2-fluorophenyl ester, presumably because the fluoro group is small. Addition of a third electron-withdrawing substituent at the 4-position, where it has no steric influence, typically increases susceptibility to decomposition. The presence of a nitro group has a significant destabilizing effect on AEs. Of the AEs studied, the 4-chlorophenyl ester showed the greatest chemiluminescent yield, while the 2-iodo-6-(trifluoromethyl)phenyl ester group showed the greatest stability in low pH buffers.
Collapse
Affiliation(s)
- Keith Smith
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
- Chemistry Department, University of Wales Swansea, Singleton Park, Swansea, SA2 8PP, United Kingdom
| | - Andy M Holland
- Chemistry Department, University of Wales Swansea, Singleton Park, Swansea, SA2 8PP, United Kingdom
| | | | - Gamal A El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Smith K, Mu X, Li Z, Woodhead JS, El-Hiti GA. Synthesis and chemiluminescent characteristics of two new acridinium esters. LUMINESCENCE 2023; 38:1857-1863. [PMID: 37555552 DOI: 10.1002/bio.4572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
Two new acridinium esters with a 2-(succinimidyloxycarbonyl)ethyl side arm, namely, 9-(2,6-dibromophenoxycarbonyl)-10-methyl-2-(2-(succinimidyloxycarbonyl)ethyl)acridinium trifluoromethanesulfonate and 9-(4-(2-(succinimidyloxycarbonyl)ethyl)phenoxycarbonyl)-2,7-dimethoxy-10-methylacridinium triflate, have been produced and characterized. The chemiluminescent properties and hydrolytic stabilities of the new acridinium esters have been investigated.
Collapse
Affiliation(s)
- Keith Smith
- School of Chemistry, Cardiff University, Cardiff, UK
- Chemistry Department, University of Wales Swansea, Swansea, UK
| | - Xiaojing Mu
- Chemistry Department, University of Wales Swansea, Swansea, UK
| | - Zhaoqiang Li
- Chemistry Department, University of Wales Swansea, Swansea, UK
| | | | - Gamal A El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Smith K, Mu X, Li Z, Holland AM, Woodhead JS, El-Hiti GA. Synthesis, structure elucidation, and chemiluminescent activity of new 9-substituted 10-(ω-(succinimidyloxycarbonyl)alkyl)acridinium esters. LUMINESCENCE 2023; 38:487-496. [PMID: 36882939 DOI: 10.1002/bio.4474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Several new acridinium esters 2-9 having their central acridinium ring bearing a 9-(2,5-dimethylphenoxycarbonyl), 9-(2,6-bis(trifluoromethyl)phenoxycarbonyl) or 9-(2,6-dinitrophenoxycarbonyl) group, and a 10-methyl, 10-(3-(succinimidyloxycarbonyl)propyl), 10-(5-(succinimidyloxycarbonyl)pentyl), or 10-(10-(succinimidyloxycarbonyl)decyl) group, have been synthesized and their chemiluminescent properties have been tested. The 2,5-dimethylphenyl acridinium esters emit light slowly (glow) when treated with alkaline hydrogen peroxide, while the 2,6-dinitrophenyl and 2,6-bis(trifluoromethyl)phenyl esters emit light rapidly (flash). The substituent at the 10 position affects the hydrolytic stabilities of the compounds.
Collapse
Affiliation(s)
- Keith Smith
- School of Chemistry, Cardiff University, Cardiff, UK
- Chemistry Department, University of Wales Swansea, Swansea, UK
| | - Xiaojing Mu
- Chemistry Department, University of Wales Swansea, Swansea, UK
| | - Zhaoqiang Li
- Chemistry Department, University of Wales Swansea, Swansea, UK
| | - Andy M Holland
- Chemistry Department, University of Wales Swansea, Swansea, UK
| | | | - Gamal A El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Wang SJ, Chen ZM, Wei M, Liu JQ, Li ZL, Shi TS, Nian S, Fu R, Wu YT, Zhang YL, Wang YB, Zhang TY, Zhang J, Xiong JH, Tong SP, Ge SX, Yuan Q, Xia NS. Specific determination of hepatitis B e antigen by antibodies targeting precore unique epitope facilitates clinical diagnosis and drug evaluation against hepatitis B virus infection. Emerg Microbes Infect 2021; 10:37-50. [PMID: 33296295 PMCID: PMC7832009 DOI: 10.1080/22221751.2020.1862631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis B e antigen (HBeAg) is a widely used marker both for chronic hepatitis B (CHB) clinical management and HBV-related basic research. However, due to its high amino acid sequence homology to hepatitis B core antigen (HBcAg), most of available anti-HBe antibodies are cross-reactive with HBcAg resulting in high interference against accurate measurement of the status and level of HBeAg. In the study, we generated several monoclonal antibodies (mAbs) targeting various epitopes on HBeAg and HBcAg. Among these mAbs, a novel mAb 16D9, which recognizes the SKLCLG (aa -10 to -5) motif on the N-terminal residues of HBeAg that is absent on HBcAg, exhibited excellent detection sensitivity and specificity in pairing with another 14A7 mAb targeting the HBeAg C-terminus (STLPETTVVRRRGR, aa141 to 154). Based on these two mAbs, we developed a novel chemiluminescent HBeAg immunoassay (NTR-HBeAg) which could detect HBeAg derived from various HBV genotypes. In contrast to widely used commercial assays, the NTR-HBeAg completely eliminated the cross-reactivity with secreted HBcAg from precore mutant (G1896A) virus in either cell culture or patient sera. The improved specificity of the NTR-HBeAg assay enables its applicability in cccDNA-targeting drug screening in cell culture systems and also provides an accurate tool for clinical HBeAg detection.
Collapse
Affiliation(s)
- Shao-Juan Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Zi-Min Chen
- Xiamen Innodx Biotech Co., Ltd., Xiamen, People's Republic of China
| | - Min Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Jia-Qi Liu
- Xiamen Innodx Biotech Co., Ltd., Xiamen, People's Republic of China
| | - Zong-Lin Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Tian-Shu Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Sheng Nian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Rao Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Yang-Tao Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Ya-Li Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Ying-Bin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Tian-Ying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Jun-Hui Xiong
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China.,Xiamen Innodx Biotech Co., Ltd., Xiamen, People's Republic of China
| | - Shu-Ping Tong
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Sheng-Xiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
6
|
Tikhomirova AA, Swift KM, Haack RA, Macdonald PJ, Hershberger SJ, Tetin SY. Acridone and acridinium constructs with red-shifted emission. Methods Appl Fluoresc 2021; 9:025006. [PMID: 33721848 DOI: 10.1088/2050-6120/abeed8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Acridinium 9-carboxylic acid derivatives have been extensively used as chemiluminescent labels in diagnostic assays. Triggering acridinium with basic hydrogen peroxide produces a highly strained dioxetanone intermediate, which converts into an acridone in an electronically excited state and emits light at 420-440 nm. Here, we introduce a novel acridinium-fluorescein construct emitting at 530 nm, in which fluorescein is covalently attached to the acridinium N-10 nitrogen via a propyl sulfonamide linker. To characterize the spectral properties of the acridinium-fluorescein chemiluminophores, we synthesized the analogous acridone-fluorescein constructs. Both acridinium and acridone were linked to either 5- or 6-carboxyfluorescein and independently synthesized as individual structural isomers. Using fluorescent acridone-fluorophore tandems, we investigated and optimized the diluent composition to prevent dye aggregation. As monomolecular species, the acridone isomers demonstrated similar absorption, excitation, and emission spectra, as well as the expected fluorescence lifetimes and molecular brightness. Chemical triggering of acridinium-fluorescein tandems, as well as direct excitation of their acridone-fluorescein analogs, resulted in a nearly complete energy transfer from acridone to fluorescein. Acridone-based dyes can be studied with steady-state spectroscopy. Thus, they will serve as useful tools for structure and solvent optimizations, as well as for studying chemiluminescent energy transfer mechanisms in related acridinium-fluorophore tandems. Direct investigations of the light-emitting molecules generated in the acridinium chemiluminescent reaction empower further development of chemiluminescent labels with red-shifted emission. As illustrated by the two-color HIV model immunoassay, such labels can find immediate applications for multicolor detection in clinical diagnostic assays.
Collapse
Affiliation(s)
- Anastasiia A Tikhomirova
- Applied Research and Technology, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois 60064, United States of America
| | | | | | | | | | | |
Collapse
|
9
|
Christenson R, Peacock W, Apple F, Limkakeng A, Nowak R, McCord J, deFilippi C. Trial design for assessing analytical and clinical performance of high-sensitivity cardiac troponin I assays in the United States: The HIGH-US study. Contemp Clin Trials Commun 2019; 14:100337. [PMID: 30834354 PMCID: PMC6384326 DOI: 10.1016/j.conctc.2019.100337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/22/2019] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND High-sensitivity cardiac troponin I (hs-cTnI) assays have been developed that quantify lower cTnI concentrations with better precision versus earlier generation assays. hs-cTnI assays allow improved clinical utility for diagnosis and risk stratification in patients presenting to the emergency department with suspected acute myocardial infarction. We describe the High-Sensitivity Cardiac Troponin I Assays in the United States (HIGH-US) study design used to conduct studies for characterizing the analytical and clinical performance of hs-cTnI assays, as required by the US Food and Drug Administration for a 510(k) clearance application. This study was non-interventional and therefore it was not registered at clinicaltrials.gov. METHODS We conducted analytic studies utilizing Clinical and Laboratory Standards Institute guidance that included limit of blank, limit of detection, limit of quantitation, linearity, within-run and between run imprecision and reproducibility as well as potential interferences and high dose hook effect. A sample set collected from healthy females and males was used to determine the overall and sex-specific cTnI 99th percentile upper reference limits (URL). The total coefficient of variation at the female 99th percentile URL and a universally available American Association for Clinical Chemistry sample set (AACC Universal Sample Bank) from healthy females and males was used to examine high-sensitivity (hs) performance of the cTnI assays. Clinical diagnosis of enrolled subjects was adjudicated by expert cardiologists and emergency medicine physicians. Assessment of temporal diagnostic accuracy including sensitivity, specificity, positive predictive value, and negative predictive value were determined at presentation and collection times thereafter. The prognostic performance at one-year after presentation to the emergency department was also performed. This design is appropriate to describe analytical characterization and clinical performance, and allows for acute myocardial infarction diagnosis and risk assessment.
Collapse
Key Words
- 99th percentile
- ACS, acute coronary syndrome
- AMI, acute myocardial infarction
- Analytical characteristics
- CLSI, Clinical and Laboratory Standards Institute
- Clinical performance
- High-sensitivity cardiac troponin
- IM, immunoassay
- Immunoassay
- Li-Hep, lithium heparin
- LoB, Limit of Blank
- LoD, Limit of Detection
- LoQ, Limit of Quantitation
- MDP, Medical Decision Pools
- NPV, negative predictive value
- PPV, positive predictive value
- Sex-specific 99th percentile cutoffs
- URL, upper reference limit
- cTn, cardiac troponin
- cTnI, cardiac troponin I
- hs-cTn, high-sensitivity cardiac troponin
- hs-cTnI, High-Sensitivity Troponin I
Collapse
Affiliation(s)
| | - W.F. Peacock
- Department of Emergency Medicine, Baylor College of Medicine, Houston, TX, USA
| | - F.S. Apple
- Department of Laboratory Medicine and Pathology, Hennepin County Medical Center of Hennepin Healthcare, University of Minnesota Minneapolis, Minneapolis, MN, USA
| | - A.T. Limkakeng
- Division of Emergency Medicine, Department of Surgery, Duke University, Durham, NC, USA
| | - R.M. Nowak
- Henry Ford Health System, Detroit, MI, USA
| | - J. McCord
- Henry Ford Hospital, Detroit, MI, USA
| | - C.R. deFilippi
- Inova Heart and Vascular Institute, Falls Church, VA, USA
| |
Collapse
|