1
|
Rusen E, Mocanu A, Brincoveanu O, Toader G, Gavrila R, Diacon A, Stavarache C. One Reaction: Two Types of Mechanism-SARA-ATRP and SET-LRP-for MMA Polymerization in the Presence of PVC. ACS OMEGA 2024; 9:42455-42469. [PMID: 39431099 PMCID: PMC11483388 DOI: 10.1021/acsomega.4c06179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024]
Abstract
This study presents for the first time the polymerization of methyl methacrylate (MMA) in the presence of poly(vinyl chloride) (PVC) that takes place by both SARA-ATRP and SET-LRP mechanisms. The two types of polymerizations that occur in the system are PMMA grafting to the PVC backbone and the formation of a new PMMA polymer, both occurring in the presence of a Cu0wire. The polymerizations were controlled as confirmed by the molecular weight evolution, polymerization kinetics, and variations in the dispersity value. The MMA polymerization in the presence of PVC at 60 and 70 °C leads to the formation of two polymer species characterized by an increase in the molecular weight with the conversion and a narrowing of the dispersity value with the reaction progress. To increase the degree of control over the polymerization, the same reaction was performed at room temperature, which allowed us to highlight the presence of the SARA-ATRP and SET-LRP mechanisms via subsequent polymer chain extensions. The results demonstrated that PMMA grafting on PVC polymers follows a SARA-ATRP mechanism, while the formation of a PMMA homopolymer entails a SET-LRP process. The influence of solvent nature on the polymerization reaction was studied by performing the grafting of N-isopropylacrylamide (NIPAM) onto the surface of PVC particles in aqueous media in the presence and in the absence of CuCl2. The polymerization reactions and the obtained materials were studied by gel permeation chromatography (GPC), 1H NMR, DMA, scanning electron microscopy (SEM), and atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Edina Rusen
- Faculty
of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Street, Bucharest 011061, Romania
| | - Alexandra Mocanu
- Faculty
of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Street, Bucharest 011061, Romania
- National
Institute for Research and Development in Microtechnologies—IMT
Bucharest, 126A Erou Iancu Nicolae Street, Bucharest 077190, Romania
| | - Oana Brincoveanu
- National
Institute for Research and Development in Microtechnologies—IMT
Bucharest, 126A Erou Iancu Nicolae Street, Bucharest 077190, Romania
- Research
Institute of the University of Bucharest, ICUB Bucharest, Soseaua Panduri, nr. 90, Sector
5, Bucurȩti 050663, Romania
| | - Gabriela Toader
- Military
Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., Bucharest 050141, Romania
| | - Raluca Gavrila
- National
Institute for Research and Development in Microtechnologies—IMT
Bucharest, 126A Erou Iancu Nicolae Street, Bucharest 077190, Romania
| | - Aurel Diacon
- Faculty
of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Street, Bucharest 011061, Romania
- Military
Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., Bucharest 050141, Romania
| | - Cristina Stavarache
- Advanced
Polymer Materials Group, University Politehnica
of Bucharest, 1−7 Gh. Polizu Street, Bucharest 011061, Romania
- “C.
D. Nenitzescu” Institute of Organic and Supramolecular Chemistry202-B
Spl. Independentei, Bucharest 060023, Romania
| |
Collapse
|
2
|
Assembling Complex Macromolecules and Self-Organizations of Biological Relevance with Cu(I)-Catalyzed Azide-Alkyne, Thio-Bromo, and TERMINI Double "Click" Reactions. Polymers (Basel) 2023; 15:polym15051075. [PMID: 36904317 PMCID: PMC10007166 DOI: 10.3390/polym15051075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
In 2022, the Nobel Prize in Chemistry was awarded to Bertozzi, Meldal, and Sharpless "for the development of click chemistry and biorthogonal chemistry". Since 2001, when the concept of click chemistry was advanced by Sharpless laboratory, synthetic chemists started to envision click reactions as the preferred choice of synthetic methodology employed to create new functions. This brief perspective will summarize research performed in our laboratories with the classic Cu(I)-catalyzed azide-alkyne click (CuAAC) reaction elaborated by Meldal and Sharpless, with the thio-bromo click (TBC) and with the less-used, irreversible TERminator Multifunctional INItiator (TERMINI) dual click (TBC) reactions, the last two elaborated in our laboratory. These click reactions will be used to assemble, by accelerated modular-orthogonal methodologies, complex macromolecules and self-organizations of biological relevance. Self-assembling amphiphilic Janus dendrimers and Janus glycodendrimers together with their biological membrane mimics known as dendrimersomes and glycodendrimersomes as well as simple methodologies to assemble macromolecules with perfect and complex architecture such as dendrimers from commercial monomers and building blocks will be discussed. This perspective is dedicated to the 75th anniversary of Professor Bogdan C. Simionescu, the son of my (VP) Ph.D. mentor, Professor Cristofor I. Simionescu, who as his father, took both science and science administration in his hands, and dedicated his life to handling them in a tandem way, to their best.
Collapse
|
3
|
Ma Q, Wang W, Zhang L, Cao H. RAFT Polymerization of Semifluorinated Monomers Mediated by a NIR Fluorinated Photocatalyst. Macromol Rapid Commun 2022; 43:e2200122. [PMID: 35394103 DOI: 10.1002/marc.202200122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/29/2022] [Indexed: 12/13/2022]
Abstract
Near-infrared (NIR) light plays an increasingly important role in the field of photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization due to its unique properties. Yet, the NIR photocatalyst with good stability for PET-RAFT polymerization remains promising. Here, a strategy of NIR PET-RAFT polymerization of semifluorinated monomers using fluorophenyl bacteriochlorin as a photocatalyst with strong absorption at the NIR light region (710-780 nm) is reported. In which, the F atoms are used to modify reduced tetraphenylporphyrin structure with enhanced photostability of photocatalyst. Under the irradiation of NIR light (λmax = 740 nm), the PET-RAFT polymerization of semifluorinated methylacrylic monomers presents living/control characteristics and temporal modulation. By the PET-RAFT polymerization-induced self-assembly (PISA) strategy, stable fluorine-containing micelles are constructed in various solvents. In addition, the fluorinated hydrophobic surface is fabricated via a surface-initiated PET-RAFT (SI-PET-RAFT) polymerization using silicon wafer bearing RAFT agents with tunable surface hydrophobicity. This strategy not only enlightens the application of further modified compounds based on porphyrin structure in photopolymerization, but also shows promising potential for the construction of well-defined functional fluoropolymers.
Collapse
Affiliation(s)
- Qiankun Ma
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wulong Wang
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Liangshun Zhang
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hongliang Cao
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
4
|
Chitosan-transition metal coordination biopolymer: a promising heterogeneous catalyst for radical ion polymerization of vinyl acetate at ambient temperature. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02683-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Wang X, Hong M. Precise Control of Molecular Weight and Stereospecificity in Lewis Pair Polymerization of Semifluorinated Methacrylates: Mechanistic Studies and Stereocomplex Formation. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00553] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xing Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Miao Hong
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Li G, Xu G, Ge Y, Dai S. Synthesis of fluorinated polyethylene of different topologies via insertion polymerization with semifluorinated acrylates. Polym Chem 2020. [DOI: 10.1039/d0py00993h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fluorinated polyethylene with different topologies can be generated via insertion polymerization with various late-transition-metal catalysts.
Collapse
Affiliation(s)
- Gen Li
- Institutes of Physical Science and Information Technology
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education
- Anhui University
- Hefei
- China
| | - Guoyong Xu
- Institutes of Physical Science and Information Technology
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education
- Anhui University
- Hefei
- China
| | - You Ge
- Institutes of Physical Science and Information Technology
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education
- Anhui University
- Hefei
- China
| | - Shengyu Dai
- Institutes of Physical Science and Information Technology
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education
- Anhui University
- Hefei
- China
| |
Collapse
|
7
|
Cheng J, Tu K, He E, Wang J, Zhang L, Cheng Z, Zhu X. Photocontrolled iodine-mediated reversible-deactivation radical polymerization with a semifluorinated alternating copolymer as the macroinitiator. Polym Chem 2020. [DOI: 10.1039/d0py01357a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel strategy for preparing block copolymers with semifluorinated alternating copolymers as macroinitiators was established by photocontrolled iodine-mediated RDRP under irradiation with blue LED light at room temperature.
Collapse
Affiliation(s)
- Jiannan Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Kai Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Enjie He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Jinying Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
8
|
Affiliation(s)
- Francesca Lorandi
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213 United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213 United States
| |
Collapse
|
9
|
Dadashi-Silab S, Matyjaszewski K. Iron-Catalyzed Atom Transfer Radical Polymerization of Semifluorinated Methacrylates. ACS Macro Lett 2019; 8:1110-1114. [PMID: 35619440 DOI: 10.1021/acsmacrolett.9b00579] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fluorinated polymers are an important class of functional materials that exhibit unique properties such as high chemical resistance, thermal stability, and low surface energy. Atom transfer radical polymerization (ATRP) of semifluorinated monomers catalyzed by copper catalysts often requires development of special conditions to control the polymerization and prevent side reactions such as base-catalyzed transesterification between the fluoro-containing monomers and solvents. In this paper, photoinduced iron-catalyzed ATRP was applied to the polymerization of a variety of semifluorinated methacrylate monomers. Polymerizations were initiated by photochemical generation of the Fe catalyst activator under blue light irradiation, enabling temporal control over the growth of polymer chains, and were well-controlled in various solvents, including fluorinated and nonfluorinated solvents, without undergoing any side reactions. Moreover, in situ chain extension and block copolymerization experiments demonstrated the preservation of chain end functionality, enabling facile synthesis of well-controlled block copolymers.
Collapse
Affiliation(s)
- Sajjad Dadashi-Silab
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
10
|
Controlled synthesis and self-assembly of amphiphilic copolymers based on 2,2,3,3,4,4,5,5-octafluoropentyl acrylate and acrylic acid. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04559-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Jaye J, Sletten EM. Modular and Processable Fluoropolymers Prepared via a Safe, Mild, Iodo-Ene Polymerization. ACS CENTRAL SCIENCE 2019; 5:982-991. [PMID: 31263757 PMCID: PMC6598165 DOI: 10.1021/acscentsci.9b00128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 05/05/2023]
Abstract
Fluoropolymers have infiltrated society as coatings and insulators. However, low processability, few opportunities for polymer functionalization, and explosive monomers hampering academic investigation of these materials have precluded the extension of the unique properties of perfluorocarbons to the cutting edge of material science. Here, we present semifluorinated iodo-ene polymers as a scaffold to overcome fluoropolymer limitations. A sodium dithionate initiated polymerization of perfluorodiiodides and dienes allows for high-molecular-weight polymers (>100 kDa) to be prepared in the presence of oxygen and water with up to 59 wt % fluorine content. These conditions are sufficiently mild to enable the polymerization of functional dienes, leading to biodegradable fluoropolymers. The iodo-ene polymerization results in the addition of polarizable iodine atoms, which improve polymer processability; yet, these atoms can be removed after processing for enhanced stability. Displacement of the iodine atoms with thiols or azides facilitates covalent surface modification and cross-linking. Finally, the low bond dissociation energy of the C-I bond allows allyl group addition as well as photo-cross-linking. Collectively, the simple synthesis and modular nature of the semifluorinated iodo-ene polymers will enable the convergence of perfluorocarbons and advanced materials.
Collapse
Affiliation(s)
- Joseph
A. Jaye
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ellen M. Sletten
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
12
|
Bensabeh N, Moreno A, Roig A, Monaghan OR, Ronda JC, Cádiz V, Galià M, Howdle SM, Lligadas G, Percec V. Polyacrylates Derived from Biobased Ethyl Lactate Solvent via SET-LRP. Biomacromolecules 2019; 20:2135-2147. [PMID: 31013072 DOI: 10.1021/acs.biomac.9b00435] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The precise synthesis of polymers derived from alkyl lactate ester acrylates is reported for the first time. Kinetic experiments were conducted to demonstrate that Cu(0) wire-catalyzed single electron transfer-living radical polymerization (SET-LRP) in alcohols at 25 °C provides a green methodology for the LRP of this forgotten class of biobased monomers. The acrylic derivative of ethyl lactate (EL) solvent and homologous structures with methyl and n-butyl ester were polymerized with excellent control over molecular weight, molecular weight distribution, and chain-end functionality. Kinetics plots in conventional alcohols such as ethanol and methanol were first order in the monomer, with molecular weight increasing linearly with conversion. However, aqueous EL mixtures were found to be more suitable than pure EL to mediate the SET-LRP process. The near-quantitative monomer conversion and high bromine chain-end functionality, demonstrated by matrix-assisted laser desorption ionization time-of-flight analysis, further allowed the preparation of innovative biobased block copolymers containing rubbery poly(ethyl lactate acrylate) poly(ELA) sequences. For instance, the poly(ELA)- b-poly(glycerol acrylate) block copolymer self-assembled in water to form stable micelles with chiral lactic acid-derived block-forming micellar core as confirmed by the pyrene-probe-based fluorescence technique. Dynamic light scattering and transmission electron microscopy measurements revealed the nanosize spherical morphology for these biobased aggregates.
Collapse
Affiliation(s)
- Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Adrian Moreno
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Adrià Roig
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Olivia R Monaghan
- School of Chemistry , University of Nottingham , University Park Nottingham, NG7 2RD Nottingham , U.K
| | - Juan C Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Steven M Howdle
- School of Chemistry , University of Nottingham , University Park Nottingham, NG7 2RD Nottingham , U.K
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain.,Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
13
|
Moreno A, Bensabeh N, Parve J, Ronda JC, Cádiz V, Galià M, Vares L, Lligadas G, Percec V. SET-LRP of Bio- and Petroleum-Sourced Methacrylates in Aqueous Alcoholic Mixtures. Biomacromolecules 2019; 20:1816-1827. [PMID: 30882211 DOI: 10.1021/acs.biomac.9b00257] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Single-electron transfer-living radical polymerization (SET-LRP) in "programmed" aqueous organic biphasic systems eliminates the judicious choice of solvent and also provides accelerated reaction rates. Herein, we report efforts to expand the monomer scope for these systems by targeting methacrylic monomers and polymers. Various environmentally friendly aqueous alcoholic mixtures were used in combination with Cu(0) wire catalyst, tris(2-dimethylaminoethyl)amine (Me6-TREN) ligand, and p-toluenesulfonyl chloride (Ts-Cl) initiator to deliver well-defined polymethacrylates from methyl methacrylate, butyl methacrylate, and other monomers derived from biomass feedstock (e.g., lactic acid, isosorbide, furfural, and lauric acid). The effect of water on the nature of the reaction mixture during the SET-LRP process, reaction rate, and control of the polymerization is discussed. The control retained under the reported conditions is demonstrated by synthesizing polymers of different targeted molar mass as well as quasi-block AB copolymers by "in situ" chain extension at high conversion. These results highlight the capabilities of SET-LRP to provide sustainable solutions based on renewable resources.
Collapse
Affiliation(s)
- Adrian Moreno
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43007 , Spain
| | - Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43007 , Spain
| | - Jaan Parve
- Department of Chemistry and Biotechnology , Tallinn University of Technology , Ehitajate tee 5 , Tallinn 19086 , Estonia
| | - Juan C Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43007 , Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43007 , Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43007 , Spain
| | - Lauri Vares
- Institute of Technology , University of Tartu , Nooruse 1 , Tartu 50411 , Estonia
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43007 , Spain.,Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
14
|
Cuthbert J, Martinez MR, Sun M, Flum J, Li L, Olszewski M, Wang Z, Kowalewski T, Matyjaszewski K. Non-Tacky Fluorinated and Elastomeric STEM Networks. Macromol Rapid Commun 2019; 40:e1800876. [PMID: 30740812 DOI: 10.1002/marc.201800876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/24/2019] [Indexed: 11/07/2022]
Abstract
Soft, elastomeric, non-tacky polymer networks are synthesized by reversible deactivation radical polymerization (RDRP). First, the pristine, structurally tailored and engineered macromolecular (STEM) networks are synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and incorporated an atom transfer radical polymerization (ATRP) inimer into the network. Subsequently, poly(n-butyl acrylate) (PBA) and/or poly(octafluoropentyl acrylate) (POFPA) side chains are grafted from the network by photo-induced ATRP. These low glass transition temperature side chains produced soft materials (E = 104-178 kPa). However, only the POFPA-containing networks are also non-tacky. The fluorine content and material properties are investigated by dynamic mechanical analysis, elemental analysis, spectroscopy, and contact angle measurements.
Collapse
Affiliation(s)
- Julia Cuthbert
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Michael R Martinez
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Mingkang Sun
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Jacob Flum
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Lingchun Li
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Zhenhua Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Tomasz Kowalewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
15
|
Vorobii M, Kostina NY, Rahimi K, Grama S, Söder D, Pop-Georgievski O, Sturcova A, Horak D, Grottke O, Singh S, Rodriguez-Emmenegger C. Antifouling Microparticles To Scavenge Lipopolysaccharide from Human Blood Plasma. Biomacromolecules 2019; 20:959-968. [DOI: 10.1021/acs.biomac.8b01583] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mariia Vorobii
- DWI−Leibniz Institute for Interactive Materials and Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Nina Yu. Kostina
- DWI−Leibniz Institute for Interactive Materials and Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Khosrow Rahimi
- DWI−Leibniz Institute for Interactive Materials and Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Silvia Grama
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16206 Prague, Czech Republic
| | - Dominik Söder
- DWI−Leibniz Institute for Interactive Materials and Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16206 Prague, Czech Republic
| | - Adriana Sturcova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16206 Prague, Czech Republic
| | - Daniel Horak
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16206 Prague, Czech Republic
| | - Oliver Grottke
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Smriti Singh
- DWI−Leibniz Institute for Interactive Materials and Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Cesar Rodriguez-Emmenegger
- DWI−Leibniz Institute for Interactive Materials and Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52074 Aachen, Germany
| |
Collapse
|
16
|
Liarou E, Anastasaki A, Whitfield R, Iacono CE, Patias G, Engelis NG, Marathianos A, Jones GR, Haddleton DM. Ultra-low volume oxygen tolerant photoinduced Cu-RDRP. Polym Chem 2019. [DOI: 10.1039/c8py01720d] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We introduce the first oxygen tolerant ultra-low volume (as low as 5 μL) photoinduced Cu-RDRP of a range of hydrophobic, hydrophilic and semi-fluorinated monomers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Glen R. Jones
- University of Warwick
- Department of Chemistry
- Coventry
- UK
| | | |
Collapse
|
17
|
Aksakal S, Beyer VP, Aksakal R, Becer CR. Copper mediated RDRP of thioacrylates and their combination with acrylates and acrylamides. Polym Chem 2019. [DOI: 10.1039/c9py01518c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ethyl thioacrylate was polymerised via Cu-RDRP and subjected to amidation to obtain the first “all-acrylic” copolymer.
Collapse
Affiliation(s)
- Suzan Aksakal
- Polymer Chemistry Laboratory
- School of Engineering and Materials Science
- Queen Mary University of London
- London
- UK
| | - Valentin P. Beyer
- Polymer Chemistry Laboratory
- School of Engineering and Materials Science
- Queen Mary University of London
- London
- UK
| | - Resat Aksakal
- Polymer Chemistry Laboratory
- School of Engineering and Materials Science
- Queen Mary University of London
- London
- UK
| | - C. Remzi Becer
- Polymer Chemistry Laboratory
- School of Engineering and Materials Science
- Queen Mary University of London
- London
- UK
| |
Collapse
|
18
|
Moreno A, Galià M, Lligadas G, Percec V. SET-LRP in Biphasic Mixtures of the Nondisproportionating Solvent Hexafluoroisopropanol with Water. Biomacromolecules 2018; 19:4480-4491. [DOI: 10.1021/acs.biomac.8b01381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
19
|
Barbon SM, Rolland M, Anastasaki A, Truong NP, Schulze MW, Bates CM, Hawker CJ. Macrocyclic Side-Chain Monomers for Photoinduced ATRP: Synthesis and Properties versus Long-Chain Linear Isomers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | | | - Nghia P. Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC 3800, Australia
| | | | | | | |
Collapse
|
20
|
Shen L, Guo H, Zheng J, Wang X, Yang Y, An Z. RAFT Polymerization-Induced Self-Assembly as a Strategy for Versatile Synthesis of Semifluorinated Liquid-Crystalline Block Copolymer Nanoobjects. ACS Macro Lett 2018; 7:287-292. [PMID: 35632919 DOI: 10.1021/acsmacrolett.8b00070] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polymerization-induced self-assembly is demonstrated as a powerful platform for the synthesis of block copolymers comprising a semifluorinated liquid-crystalline block. This strategy transforms the deficiency of polymer insolubility encountered in traditional homogeneous solution protocols to the strength for dispersion polymerization, thus, enabling direct access to polymorphic block copolymer nanoobjects at high concentrations and with quantitative conversions. The versatility of this strategy is highlighted by polymerizations in a wide selection of inexpensive solvents, from nonpolar to highly polar, to afford various block copolymers with distinct combinations of amorphous/crystalline or hydrophilic/hydrophobic/fluorinated segments. The utility of the nanoparticles is demonstrated as robust Pickering emulsifiers for commonly considered good solvents.
Collapse
Affiliation(s)
- Liangliang Shen
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jinwen Zheng
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiao Wang
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Yang
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
21
|
Bensabeh N, Ronda JC, Galià M, Cádiz V, Lligadas G, Percec V. SET-LRP of the Hydrophobic Biobased Menthyl Acrylate. Biomacromolecules 2018. [DOI: 10.1021/acs.biomac.8b00090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Joan C. Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
22
|
Moreno A, Lejnieks J, Ding L, Grama S, Galià M, Lligadas G, Percec V. Highly reactive α-bromoacrylate monomers and Michael acceptors obtained by Cu(ii)Br2-dibromination of acrylates and instantaneous E2 by a ligand. Polym Chem 2018. [DOI: 10.1039/c8py00155c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The importance of the order of addition of reagents in SET-LRP.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Jānis Lejnieks
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Liang Ding
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
23
|
Quan Q, Gong H, Chen M. Preparation of semifluorinated poly(meth)acrylates by improved photo-controlled radical polymerization without the use of a fluorinated RAFT agent: facilitating surface fabrication with fluorinated materials. Polym Chem 2018. [DOI: 10.1039/c8py00990b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Semifluorinated poly(meth)acrylates are prepared under both organocatalyzed and catalyst-free photo-controlled radical polymerization conditions from simple RAFT agents.
Collapse
Affiliation(s)
- Qinzhi Quan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Honghong Gong
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
24
|
Moreno A, Lejnieks J, Galià M, Lligadas G, Percec V. Acetone: a solvent or a reagent depending on the addition order in SET-LRP. Polym Chem 2018. [DOI: 10.1039/c8py01331d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The importance of reagent order in biphasic SET-LRP in acetone/water mixtures is shown.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Jānis Lejnieks
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
25
|
Yang Q, Guerre M, Ladmiral V, Ameduri B. Thermal and photo-RAFT polymerization of 2,2,2-trifluoroethyl α-fluoroacrylate. Polym Chem 2018. [DOI: 10.1039/c8py00571k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RAFT polymerization of 2,2,2-trifluoroethyl α-fluoroacrylate (FATRIFE) was studied under thermal conditions and light irradiation in the presence of four chain transfer agents. Polymers with narrow dispersities were obtained in the presence of trithiocarbonate CTA2, and this further led to fluorinated block copolymers.
Collapse
Affiliation(s)
- Qizhi Yang
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- 34296 Cedex 5 Montpellier
| | - Marc Guerre
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- 34296 Cedex 5 Montpellier
| | | | - Bruno Ameduri
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- 34296 Cedex 5 Montpellier
| |
Collapse
|
26
|
Moreno A, Liu T, Ding L, Buzzacchera I, Galià M, Möller M, Wilson CJ, Lligadas G, Percec V. SET-LRP in biphasic mixtures of fluorinated alcohols with water. Polym Chem 2018. [DOI: 10.1039/c8py00062j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Efficient and inexpensive SET-LRP in biphasic-mixtures of fluorinated alcohols with water.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Tong Liu
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Liang Ding
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Irene Buzzacchera
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | | | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
27
|
Gong H, Zhao Y, Shen X, Lin J, Chen M. Organocatalyzed Photocontrolled Radical Polymerization of Semifluorinated (Meth)acrylates Driven by Visible Light. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201711053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Honghong Gong
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| | - Yucheng Zhao
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
- Key Laboratory of Medicinal Chemistry for Natural Resource; Ministry of Education, School of Chemical Science and Technology; Yunnan University; Kunming 650091 China
| | - Xianwang Shen
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
- Key Laboratory of Medicinal Chemistry for Natural Resource; Ministry of Education, School of Chemical Science and Technology; Yunnan University; Kunming 650091 China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource; Ministry of Education, School of Chemical Science and Technology; Yunnan University; Kunming 650091 China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| |
Collapse
|
28
|
Gong H, Zhao Y, Shen X, Lin J, Chen M. Organocatalyzed Photocontrolled Radical Polymerization of Semifluorinated (Meth)acrylates Driven by Visible Light. Angew Chem Int Ed Engl 2017; 57:333-337. [DOI: 10.1002/anie.201711053] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Honghong Gong
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| | - Yucheng Zhao
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
- Key Laboratory of Medicinal Chemistry for Natural Resource; Ministry of Education, School of Chemical Science and Technology; Yunnan University; Kunming 650091 China
| | - Xianwang Shen
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
- Key Laboratory of Medicinal Chemistry for Natural Resource; Ministry of Education, School of Chemical Science and Technology; Yunnan University; Kunming 650091 China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource; Ministry of Education, School of Chemical Science and Technology; Yunnan University; Kunming 650091 China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| |
Collapse
|
29
|
Effect of hydrophobic fluoropolymer and crystallinity on the hydrolytic degradation of poly(lactic acid). Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.09.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Kumar S, Deike S, Binder WH. One-Pot Synthesis of Thermoresponsive Amyloidogenic Peptide-Polymer Conjugates via Thio-Bromo "Click" Reaction of RAFT Polymers. Macromol Rapid Commun 2017; 39. [PMID: 29076195 DOI: 10.1002/marc.201700507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/13/2017] [Indexed: 11/09/2022]
Abstract
A synthetic strategy to efficiently prepare main-chain peptide-polymer conjugates probing their aggregation in solution is described. An in situ tandem reaction based on aminolysis/thio-bromo "click" reaction is performed to tether an amyloidogenic peptide fragment amyloid-β17-20 (Leu-Val-Phe-Phe (LVFF)) to the ω-chain end of poly(diethylene glycol methyl ether acrylate) (PDEGA), prepared via reversible addition fragmentation chain transfer polymerization. Structural confirmation of the constructed conjugates PDEGA-LVFF (Mn,SEC = 5600, Ð = 1.21), (Mn,SEC = 7600, Ð = 1.16), and (Mn,SEC = 8900, Ð = 1.15) is successfully made by combined studies of 1 H NMR, size-exclusion chromatography, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, and electrospray ionization time-of-flight (ESI-TOF) mass spectrometry. The effect of the peptidic constituent on the thermoresponsive behavior of the polymer is examined by UV-vis spectroscopy, and the self-assembly behavior of the amphiphilic conjugate is further exploited, exhibiting micellar morphology in aqueous solution.
Collapse
Affiliation(s)
- Sonu Kumar
- Chair of Macromolecular Chemistry, Faculty of Natural Science II (Chemistry Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale), D-06120, Germany
| | - Stefanie Deike
- Chair of Macromolecular Chemistry, Faculty of Natural Science II (Chemistry Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale), D-06120, Germany
| | - Wolfgang H Binder
- Chair of Macromolecular Chemistry, Faculty of Natural Science II (Chemistry Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale), D-06120, Germany
| |
Collapse
|
31
|
Lligadas G, Grama S, Percec V. Single-Electron Transfer Living Radical Polymerization Platform to Practice, Develop, and Invent. Biomacromolecules 2017; 18:2981-3008. [DOI: 10.1021/acs.biomac.7b01131] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
32
|
Lligadas G, Enayati M, Grama S, Smail R, Sherman SE, Percec V. Ultrafast SET-LRP with Peptoid Cytostatic Drugs as Monofunctional and Bifunctional Initiators. Biomacromolecules 2017; 18:2610-2622. [DOI: 10.1021/acs.biomac.7b00722] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Gerard Lligadas
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Mojtaba Enayati
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Silvia Grama
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Rauan Smail
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Samuel E. Sherman
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
33
|
Discekici EH, Anastasaki A, Kaminker R, Willenbacher J, Truong NP, Fleischmann C, Oschmann B, Lunn DJ, Read de Alaniz J, Davis TP, Bates CM, Hawker CJ. Light-Mediated Atom Transfer Radical Polymerization of Semi-Fluorinated (Meth)acrylates: Facile Access to Functional Materials. J Am Chem Soc 2017; 139:5939-5945. [PMID: 28406296 DOI: 10.1021/jacs.7b01694] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A highly efficient photomediated atom transfer radical polymerization protocol is reported for semi-fluorinated acrylates and methacrylates. Use of the commercially available solvent, 2-trifluoromethyl-2-propanol, optimally balances monomer, polymer, and catalyst solubility while eliminating transesterification as a detrimental side reaction. In the presence of UV irradiation and ppm concentrations of copper(II) bromide and Me6-TREN (TREN = tris(2-aminoethyl amine)), semi-fluorinated monomers with side chains containing between three and 21 fluorine atoms readily polymerize under controlled conditions. The resulting polymers exhibit narrow molar mass distributions (Đ ≈ 1.1) and high end group fidelity, even at conversions greater than 95%. This level of control permits the in situ generation of chain-end functional homopolymers and diblock copolymers, providing facile access to semi-fluorinated macromolecules using a single methodology with unprecedented monomer scope. The results disclosed herein should create opportunities across a variety of fields that exploit fluorine-containing polymers for tailored bulk, interfacial, and solution properties.
Collapse
Affiliation(s)
- Emre H Discekici
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106, United States.,Materials Research Laboratory, University of California , Santa Barbara, California 93106, United States
| | - Athina Anastasaki
- Materials Research Laboratory, University of California , Santa Barbara, California 93106, United States
| | - Revital Kaminker
- Materials Research Laboratory, University of California , Santa Barbara, California 93106, United States
| | - Johannes Willenbacher
- Materials Research Laboratory, University of California , Santa Barbara, California 93106, United States
| | - Nghia P Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Carolin Fleischmann
- Materials Research Laboratory, University of California , Santa Barbara, California 93106, United States
| | - Bernd Oschmann
- Materials Research Laboratory, University of California , Santa Barbara, California 93106, United States
| | - David J Lunn
- Materials Research Laboratory, University of California , Santa Barbara, California 93106, United States.,Department of Chemistry, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106, United States.,Materials Research Laboratory, University of California , Santa Barbara, California 93106, United States
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia.,Department of Chemistry, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Christopher M Bates
- Materials Research Laboratory, University of California , Santa Barbara, California 93106, United States.,Materials Department, University of California , Santa Barbara, California 93106, United States.,Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Craig J Hawker
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106, United States.,Materials Research Laboratory, University of California , Santa Barbara, California 93106, United States.,Materials Department, University of California , Santa Barbara, California 93106, United States
| |
Collapse
|
34
|
Lligadas G, Grama S, Percec V. Recent Developments in the Synthesis of Biomacromolecules and their Conjugates by Single Electron Transfer-Living Radical Polymerization. Biomacromolecules 2017; 18:1039-1063. [PMID: 28276244 DOI: 10.1021/acs.biomac.7b00197] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Single electron transfer-living radical polymerization (SET-LRP) represents a robust and versatile tool for the synthesis of vinyl polymers with well-defined topology and chain end functionality. The crucial step in SET-LRP is the disproportionation of the Cu(I)X generated by activation with Cu(0) wire, powder, or nascent Cu(0) generated in situ into nascent, extremely reactive Cu(0) atoms and nanoparticles and Cu(II)X2. Nascent Cu(0) activates the initiator and dormant chains via a homogeneous or heterogeneous outer-sphere single-electron transfer mechanism (SET-LRP). SET-LRP provides an ultrafast polymerization of a plethora of monomers (e.g., (meth)-acrylates, (meth)-acrylamides, styrene, and vinyl chloride) including hydrophobic and water insoluble to hydrophilic and water soluble. Some advantageous features of SET-LRP are (i) the use of Cu(0) wire or powder as readily available catalysts under mild reaction conditions, (ii) their excellent control over molecular weight evolution and distribution as well as polymer chain ends, (iii) their high functional group tolerance allowing the polymerization of commercial-grade monomers, and (iv) the limited purification required for the resulting polymers. In this Perspective, we highlight the recent advancements of SET-LRP in the synthesis of biomacromolecules and of their conjugates.
Collapse
Affiliation(s)
- Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States.,Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili , Tarragona, Spain
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
35
|
Smail RB, Jezorek RL, Lejnieks J, Enayati M, Grama S, Monteiro MJ, Percec V. Acetone–water biphasic mixtures as solvents for ultrafast SET-LRP of hydrophobic acrylates. Polym Chem 2017. [DOI: 10.1039/c7py00557a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transformation of SET-LRP catalyzed with Cu(0) wire from single phase (acetone/water = 9/1, v/v) into biphase (acetone/water = 8/2, v/v).
Collapse
Affiliation(s)
- Rauan B. Smail
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Ryan L. Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Jānis Lejnieks
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Mojtaba Enayati
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
36
|
Ding A, Lu G, Guo H, Huang X. PDMAEMA-b-PPOA-b-PDMAEMA double-bond-containing amphiphilic triblock copolymer: synthesis, characterization, and pH-responsive self-assembly. Polym Chem 2017. [DOI: 10.1039/c7py01640a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This article reports a new pH-responsive double-bond-containing ABA triblock copolymer synthesized via a combination of free radical polymerization and SET-LRP.
Collapse
Affiliation(s)
- Aishun Ding
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Hao Guo
- Department of Chemistry
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| |
Collapse
|
37
|
Moreno A, Grama S, Liu T, Galià M, Lligadas G, Percec V. SET-LRP mediated by TREN in biphasic water–organic solvent mixtures provides the most economical and efficient process. Polym Chem 2017. [DOI: 10.1039/c7py01841j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Screening ligands and solvents for economical and efficient biphasic SET-LRP.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Tong Liu
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
38
|
Jezorek RL, Enayati M, Smail RB, Lejnieks J, Grama S, Monteiro MJ, Percec V. The stirring rate provides a dramatic acceleration of the ultrafast interfacial SET-LRP in biphasic acetonitrile–water mixtures. Polym Chem 2017. [DOI: 10.1039/c7py00659d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The rate of interfacial SET-LRP in biphasic acetonitrile–water mixtures is stirring rate dependent.
Collapse
Affiliation(s)
- Ryan L. Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Mojtaba Enayati
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Rauan B. Smail
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Jānis Lejnieks
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
39
|
Liu M, Zeng G, Wang K, Wan Q, Tao L, Zhang X, Wei Y. Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. NANOSCALE 2016; 8:16819-16840. [PMID: 27704068 DOI: 10.1039/c5nr09078d] [Citation(s) in RCA: 327] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
After more than four billion years of evolution, nature has created a large number of fascinating living organisms, which show numerous peculiar structures and wonderful properties. Nature can provide sources of plentiful inspiration for scientists to create various materials and devices with special functions and uses. Since Messersmith proposed the fabrication of multifunctional coatings through mussel-inspired chemistry, this field has attracted considerable attention for its promising and exiciting applications. Polydopamine (PDA), an emerging soft matter, has been demonstrated to be a crucial component in mussel-inspired chemistry. In this review, the recent developments of PDA for mussel-inspired surface modification are summarized and discussed. The biomedical applications of PDA-based materials are also highlighted. We believe that this review can provide important and timely information regarding mussel-inspired chemistry and will be of great interest for scientists in the chemistry, materials, biology, medicine and interdisciplinary fields.
Collapse
Affiliation(s)
- Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Xiaoyongzhang@
| | - Guangjian Zeng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Xiaoyongzhang@
| | - Ke Wang
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China.
| | - Qing Wan
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Xiaoyongzhang@
| | - Lei Tao
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Xiaoyongzhang@
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
40
|
Cui Y, Jiang X, Feng C, Gu G, Xu J, Huang X. First double hydrophilic graft copolymer bearing a poly(2-hydroxylethyl acrylate) backbone synthesized by sequential RAFT polymerization and SET-LRP. Polym Chem 2016. [DOI: 10.1039/c6py00489j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reports the first synthesis of well-defined double hydrophilic graft copolymers with a PHEA backbone, by the combination of RAFT polymerization, SET-LRP, and a grafting-from strategy.
Collapse
Affiliation(s)
- Yinan Cui
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Xiuyu Jiang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Guangxin Gu
- Department of Materials Science
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Jie Xu
- Department of Materials Science
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| |
Collapse
|
41
|
Anastasaki A, Nikolaou V, Haddleton DM. Cu(0)-mediated living radical polymerization: recent highlights and applications; a perspective. Polym Chem 2016. [DOI: 10.1039/c5py01916h] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cu(0)-mediated living radical polymerization or single electron transfer living radical polymerization (Cu(0)-mediated LRP or SET-LRP) is a versatile polymerization technique that has attracted considerable interest during the past few years for the facile preparation of advanced materials.
Collapse
Affiliation(s)
- Athina Anastasaki
- University of Warwick
- Chemistry Department
- Coventry
- UK
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | | | - David M. Haddleton
- University of Warwick
- Chemistry Department
- Coventry
- UK
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| |
Collapse
|
42
|
Sun F, Feng C, Liu H, Huang X. PHEA-g-PDMAEA well-defined graft copolymers: SET-LRP synthesis, self-catalyzed hydrolysis, and quaternization. Polym Chem 2016. [DOI: 10.1039/c6py01637e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article reports the synthesis of well-defined graft copolymers containing a PHEA backbone and degradable PDMAEA side chains, by the combination of RAFT polymerization, SET-LRP, and the grafting-from strategy.
Collapse
Affiliation(s)
- Fangxu Sun
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Haoyu Liu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| |
Collapse
|
43
|
Enayati M, Jezorek RL, Percec V. A multiple-stage activation of the catalytically inhomogeneous Cu(0) wire used in SET-LRP. Polym Chem 2016. [DOI: 10.1039/c6py00888g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The surface of a Cu(0) wire used as a catalyst in SET-LRP is inhomogeneous since it contains a combination of Cu(111) and Cu(100) faces of the FCC unit cell whose ratio is dependent on the fabrication method. A method to activate this inhomogeneous Cu(0) wire for SET-LRP is reported.
Collapse
Affiliation(s)
- Mojtaba Enayati
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Ryan L. Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
44
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
45
|
Anastasaki A, Nikolaou V, Nurumbetov G, Wilson P, Kempe K, Quinn JF, Davis TP, Whittaker MR, Haddleton DM. Cu(0)-Mediated Living Radical Polymerization: A Versatile Tool for Materials Synthesis. Chem Rev 2015; 116:835-77. [DOI: 10.1021/acs.chemrev.5b00191] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Athina Anastasaki
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Vasiliki Nikolaou
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Gabit Nurumbetov
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Paul Wilson
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Kristian Kempe
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - John F. Quinn
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Thomas P. Davis
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Michael R. Whittaker
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - David M. Haddleton
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| |
Collapse
|
46
|
Zhang Q, Li M, Zhu C, Nurumbetov G, Li Z, Wilson P, Kempe K, Haddleton DM. Well-Defined Protein/Peptide–Polymer Conjugates by Aqueous Cu-LRP: Synthesis and Controlled Self-Assembly. J Am Chem Soc 2015; 137:9344-53. [DOI: 10.1021/jacs.5b04139] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qiang Zhang
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Muxiu Li
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Chongyu Zhu
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Gabit Nurumbetov
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Zaidong Li
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Paul Wilson
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Kristian Kempe
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - David M. Haddleton
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| |
Collapse
|
47
|
Tian Z, Chen C, Allcock HR. New Mixed-Substituent Fluorophosphazene High Polymers and Small Molecule Cyclophosphazene Models: Synthesis, Characterization, and Structure Property Correlations. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00170] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhicheng Tian
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chen Chen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Harry R. Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
48
|
Chen S, Binder WH. Controlled copolymerization of n-butyl acrylate with semifluorinated acrylates by RAFT polymerization. Polym Chem 2015. [DOI: 10.1039/c4py01084a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new class of well-controlled semifluorinated copolymers were successfully synthesized via RAFT polymerization. We found that ESI-TOF MS was particularly useful for readily analysing our semifluorinated copolymers. The reactivity ratios of each pair of co-monomers are close to one.
Collapse
Affiliation(s)
- Senbin Chen
- Institute of Chemistry
- Chair of Macromolecular Chemistry
- Faculty of Natural Sciences II (Chemistry
- Physics and Mathematics)
- Martin-Luther University Halle-Wittenberg
| | - Wolfgang H. Binder
- Institute of Chemistry
- Chair of Macromolecular Chemistry
- Faculty of Natural Sciences II (Chemistry
- Physics and Mathematics)
- Martin-Luther University Halle-Wittenberg
| |
Collapse
|
49
|
Chen S, Schulz M, Lechner BD, Appiah C, Binder WH. One-pot synthesis and self-assembly of supramolecular dendritic polymers. Polym Chem 2015. [DOI: 10.1039/c5py01329a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A X–Y2 type heterotropic single-chain polymer, Ba-(PnBuA-HW)2, is prepared in a one-pot two-step reaction, subsequently self-assembling into supramolecular dendrimers, which are displaying solvent-dependent disc-like hierarchical nanoscopic structures as evidenced by AFM.
Collapse
Affiliation(s)
- Senbin Chen
- Chair of Macromolecular Chemistry
- Faculty of Natural Science II (Chemistry
- Physics and Mathematics)
- Martin-Luther University Halle-Wittenberg
- Halle (Saale) D-06120
| | - Matthias Schulz
- Chair of Macromolecular Chemistry
- Faculty of Natural Science II (Chemistry
- Physics and Mathematics)
- Martin-Luther University Halle-Wittenberg
- Halle (Saale) D-06120
| | - Bob-Dan Lechner
- Physical Chemistry
- Faculty of Natural Sciences II (Chemistry
- Physics and Mathematics)
- Martin-Luther University Halle-Wittenberg
- Halle (Saale) D-06120
| | - Clement Appiah
- Chair of Macromolecular Chemistry
- Faculty of Natural Science II (Chemistry
- Physics and Mathematics)
- Martin-Luther University Halle-Wittenberg
- Halle (Saale) D-06120
| | - Wolfgang H. Binder
- Chair of Macromolecular Chemistry
- Faculty of Natural Science II (Chemistry
- Physics and Mathematics)
- Martin-Luther University Halle-Wittenberg
- Halle (Saale) D-06120
| |
Collapse
|
50
|
Samanta SR, Cai R, Percec V. A rational approach to activated polyacrylates and polymethacrylates by using a combination of model reactions and SET-LRP of hexafluoroisopropyl acrylate and methacrylate. Polym Chem 2015. [DOI: 10.1039/c5py00082c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new class of activated polyacrylates was elaborated by a combination of model reactions and SET-LRP of hexafluoroisopropyl acrylate and methacrylate.
Collapse
Affiliation(s)
- Shampa R. Samanta
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Ruilong Cai
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|