1
|
Gayen AK, Singla R, Ramakrishnan S. Hyperbranched polymers: growing richer in flavours with time. Chem Commun (Camb) 2024; 60:1534-1545. [PMID: 38252017 DOI: 10.1039/d3cc05506j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Hyperbranched polymers (HBPs) have been studied for over three decades now; yet several interesting aspects continue to draw the attention of researchers worldwide. This is because of the simplicity of synthesis, their unique globular structure, and the numerous peripherally located functional groups that can be utilised to impart a variety of attributes, such as core-shell amphiphilicity, Janus amphiphilicity, clickable polymeric scaffolds, multifunctional crosslinkers, etc. Several reviews have been written on HBPs with a focus on synthetic strategies, structural diversity, and their potential applications; in this short feature article, we have taken an alternate approach to highlight some of the unique structural features of HBPs and their influence on the properties of HBPs. We also discuss their versatility and adaptability for the generation of several interesting functional polymeric systems. In the latter half, we focus on the utilisation of HBPs as multifunctional scaffolds, that rely on the numerous peripheral terminal groups. We conclude by drawing a structuro-functional analogy between the range of peripherally functionalised HBPs and other analogous, but more complex, polymeric systems. We believe that this review will serve as a visual sounding board that would encourage the development of several other applications for this class of unique polymers.
Collapse
Affiliation(s)
- Arun Kumar Gayen
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Runa Singla
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - S Ramakrishnan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
2
|
Indumathy B, Sathiyanathan P, Prasad G, Reza MS, Prabu AA, Kim H. A Comprehensive Review on Processing, Development and Applications of Organofunctional Silanes and Silane-Based Hyperbranched Polymers. Polymers (Basel) 2023; 15:polym15112517. [PMID: 37299316 DOI: 10.3390/polym15112517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
Since the last decade, hyperbranched polymers (HBPs) have gained wider theoretical interest and practical applications in sensor technology due to their ease of synthesis, highly branched structure but dimensions within nanoscale, a larger number of modified terminal groups and lowering of viscosity in polymer blends even at higher HBP concentrations. Many researchers have reported the synthesis of HBPs using different organic-based core-shell moieties. Interestingly, silanes, as organic-inorganic hybrid modifiers of HBP, are of great interest as they resulted in a tremendous improvement in HBP properties like increasing thermal, mechanical and electrical properties compared to that of organic-only moieties. This review focuses on the research progress in organofunctional silanes, silane-based HBPs and their applications since the last decade. The effect of silane type, its bi-functional nature, its influence on the final HBP structure and the resultant properties are covered in detail. Methods to enhance the HBP properties and challenges that need to be overcome in the near future are also discussed.
Collapse
Affiliation(s)
- Balaraman Indumathy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Ponnan Sathiyanathan
- Department of Advanced Materials Engineering for Information & Electronics, College of Engineering, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Gajula Prasad
- School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education, 1600, Cheonan-si 31253, Republic of Korea
| | - Mohammad Shamim Reza
- Department of Advanced Materials Engineering for Information & Electronics, College of Engineering, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Arun Anand Prabu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Hongdoo Kim
- Department of Advanced Materials Engineering for Information & Electronics, College of Engineering, Kyung Hee University, Yongin-si 17104, Republic of Korea
| |
Collapse
|
3
|
Mazumder K, Komber H, Bittrich E, Voit B, Banerjee S. Synthesis and characterization of poly(1,2,3‐triazole)s with inherent high sulfur content for optical applications. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Kajari Mazumder
- Materials Science Centre Indian Institute of Technology Kharagpur Kharagpur India
- Leibniz‐Institut für Polymerforschung Dresden e.V. Institute of Macromolecular Chemistry Dresden Germany
| | - Hartmut Komber
- Leibniz‐Institut für Polymerforschung Dresden e.V. Institute of Macromolecular Chemistry Dresden Germany
| | - Eva Bittrich
- Leibniz‐Institut für Polymerforschung Dresden e.V. Institute of Macromolecular Chemistry Dresden Germany
| | - Brigitte Voit
- Leibniz‐Institut für Polymerforschung Dresden e.V. Institute of Macromolecular Chemistry Dresden Germany
- Chair Organic Chemistry of Polymers Technische Universität Dresden Dresden Germany
| | - Susanta Banerjee
- Materials Science Centre Indian Institute of Technology Kharagpur Kharagpur India
| |
Collapse
|
4
|
Santiago D, Serra À. Enhancement of Epoxy Thermosets with Hyperbranched and Multiarm Star Polymers: A Review. Polymers (Basel) 2022; 14:2228. [PMID: 35683901 PMCID: PMC9182725 DOI: 10.3390/polym14112228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 02/05/2023] Open
Abstract
Hyperbranched polymers and multiarm star polymers are a type of dendritic polymers which have attracted substantial interest during the last 30 years because of their unique properties. They can be used to modify epoxy thermosets to increase their toughness and flexibility but without adversely affecting other properties such as reactivity or thermal properties. In addition, the final properties of materials can be tailored by modifying the structure, molecular weight, or type of functional end-groups of the hyperbranched and multiarm star polymers. In this review, we focus on the modification of epoxy-based thermosets with hyperbranched and multiarm star polymers in terms of the effect on the curing process of epoxy formulations, thermal, mechanical, and rheological properties, and their advantages in fire retardancy on the final thermosets.
Collapse
Affiliation(s)
- David Santiago
- Eurecat–Chemical Technologies Unit, C/Marcel·lí Domingo 2, 43007 Tarragona, Spain
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Àngels Serra
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain;
| |
Collapse
|
5
|
Ahmadi Y, Kim KH. Hyperbranched polymers as superior adsorbent for the treatment of dyes in water. Adv Colloid Interface Sci 2022; 302:102633. [PMID: 35259566 DOI: 10.1016/j.cis.2022.102633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 01/22/2023]
Abstract
The effective control on environmental pollutants is crucial for the proper management of diverse environmental systems (e.g., soil, water, and air). In this respect, the utility of various functional materials such as hyperbranched polymers (HPs) has been recognized due to their great potentil as adsorbent for the mitigation of numerous environmental pollutants. Here, we highlight the latest progress achieved in the design and construction of HPs with high adsorption potentials. We focus on adsorption mechanisms, functionalization methods, the role of functional groups in adsorption capacity, and the choice of HPs in adsorption of cationic and anionic dyes. Recent published reports are reviewed to quantify and qualify the removal efficiency of pollutants through adsorption. We also evaluate the adsorbing efficiency of the constructed HPs and compared their performance with other such systems. The utilization potential of new materials (magnetic, polar, and biological) is highlighted along with the methods needed for their preparation and/or modification (surface, end-group, and zwitterionic) for the construction of efficient adsorbing systems. Finally, the advantages and limitations of adsorbing systems are described along with the existing challenges to help establish guidelines for future research. This article is thus expected to offer new path and guidance for developing advanced HP-based adsorbents.
Collapse
Affiliation(s)
- Younes Ahmadi
- Department of Analytical Chemistry, Kabul University, Kabul 1001, Afghanistan; Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
6
|
Thalji MR, Ibrahim AA, Ali GA. Cutting-edge development in dendritic polymeric materials for biomedical and energy applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Chen B, Syed MN, Daymon SP, Olson BG, Kareem OO, Giesen JA, Fahs GB, Moore RR, Grayson SM, Nazarenko S. Insights and comparison of structure–bulk property relationships in low generation hydroxylated polyester dendrimer and hyperbranched polymer prepared from bis-MPA monomer. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Zhang J, Zhang Z, Wang J, Zang Q, Sun JZ, Tang BZ. Recent progress in the applications of amino–yne click chemistry. Polym Chem 2021. [DOI: 10.1039/d1py00113b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This mini-review summarizes the recent research studies on the application of the amino–yne click reaction in surface immobilization, construction of drug delivery systems, preparation of hydrogel materials and synthesis of functional polymers.
Collapse
Affiliation(s)
- Jie Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhiming Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Centre for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou
| | - Qiguang Zang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
9
|
Hatamvand R, Adeli M, Yari A. Synthesis of glycerol‐thiophene nanoparticles, a suitable sensing platform for voltammetric determination of guaifenesin. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Roshanak Hatamvand
- Department of Chemistry, Faculty of Science Lorestan University Khorramabad Iran
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science Lorestan University Khorramabad Iran
- Institut für Chemie und Biochemie Freie Universität Berlin Berlin Germany
| | - Abdollah Yari
- Department of Chemistry, Faculty of Science Lorestan University Khorramabad Iran
| |
Collapse
|
10
|
He B, Zhang J, Wang J, Wu Y, Qin A, Tang BZ. Preparation of Multifunctional Hyperbranched Poly(β-aminoacrylate)s by Spontaneous Amino-yne Click Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00813] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Benzhao He
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077 China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Jing Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077 China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Yongwei Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077 China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|
11
|
Daglar O, Gungor B, Guric G, Gunay US, Hizal G, Tunca U, Durmaz H. Rapid Hyperbranched Polythioether Synthesis Through Thiol‐Michael Addition Reaction. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ozgun Daglar
- Department of ChemistryIstanbul Technical University 34469 Maslak, Istanbul Turkey
| | - Begum Gungor
- Department of ChemistryIstanbul Technical University 34469 Maslak, Istanbul Turkey
| | - Gulce Guric
- Department of ChemistryIstanbul Technical University 34469 Maslak, Istanbul Turkey
| | - Ufuk Saim Gunay
- Department of ChemistryIstanbul Technical University 34469 Maslak, Istanbul Turkey
| | - Gurkan Hizal
- Department of ChemistryIstanbul Technical University 34469 Maslak, Istanbul Turkey
| | - Umit Tunca
- Department of ChemistryIstanbul Technical University 34469 Maslak, Istanbul Turkey
| | - Hakan Durmaz
- Department of ChemistryIstanbul Technical University 34469 Maslak, Istanbul Turkey
| |
Collapse
|
12
|
Zhang X, Dai Y, Dai G. Advances in amphiphilic hyperbranched copolymers with an aliphatic hyperbranched 2,2-bis(methylol)propionic acid-based polyester core. Polym Chem 2020. [DOI: 10.1039/c9py01608b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic hyperbranched copolymers with an aliphatic hyperbranched 2,2-bis(methylol)propionic acid-based polyester core were highlighted.
Collapse
Affiliation(s)
- Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Guofei Dai
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake
- Jiangxi Institute of Water Sciences
- Nanchang 330029
- China
| |
Collapse
|
13
|
Longe L, Garnier G, Saito K. Synthesis of Lignin-based Phenol Terminated Hyperbranched Polymer. Molecules 2019; 24:E3717. [PMID: 31623084 PMCID: PMC6832395 DOI: 10.3390/molecules24203717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022] Open
Abstract
In this work, we proved the efficient synthesis of a bio-based hyper-branched polyphenol from a modified lignin degradation fragment. Protocatechuic acid was readily obtained from vanillin, a lignin degradation product, via alkaline conditions, and further polymerised to yield high molecular weight hyperbranched phenol terminated polyesters. Vanillic acid was also subjected to similar polymerisation conditions in order to compare polymerisation kinetics and differences between linear and hyperbranched polymers. Overall, protocatechuic acid was faster to polymerise and more thermostable with a degradation temperature well above linear vanillic acid polyester. Both polymers exhibited important radical scavenging activity (RSA) compared to commercial antioxidant and present tremendous potential for antioxidant applications.
Collapse
Affiliation(s)
- Lionel Longe
- School of Chemistry, Bioresource Processing Research Institute of Australia (BioPRIA), Monash University, Clayton 3800, Australia.
| | - Gil Garnier
- Department of Chemical Engineering, Bioresource Processing Research Institute of Australia (BioPRIA), Monash University Clayton 3800, Australia.
| | - Kei Saito
- School of Chemistry, Bioresource Processing Research Institute of Australia (BioPRIA), Monash University, Clayton 3800, Australia.
| |
Collapse
|
14
|
Zhang Z, Ye Z, Han S, Li S. One-Pot Synthesis of Hyperbranched and Star Polyketones by Palladium-Catalyzed Terpolymerization of 4-tert-Butylstyrene, Divinylbenzene, and Carbon Monoxide. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Zhichao Zhang
- Bharti School of Engineering, Laurentian University, Sudbury P3E 2C6, Ontario, Canada
- School of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Zhibin Ye
- Bharti School of Engineering, Laurentian University, Sudbury P3E 2C6, Ontario, Canada
- Department of Chemical and Materials Engineering, Concordia University, Montreal H3G 1M8, Quebec, Canada
| | - Shuang Han
- School of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Shiyun Li
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| |
Collapse
|
15
|
Dzhardimalieva GI, Uflyand IE. Synthetic Methodologies for Chelating Polymer Ligands: Recent Advances and Future Development. ChemistrySelect 2018. [DOI: 10.1002/slct.201802516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of MetallopolymersThe Institute of Problems of Chemical Physics RAS Academician Semenov avenue 1, Chernogolovka, Moscow Region 142432 Russian Federation
| | - Igor E. Uflyand
- Department of ChemistrySouthern Federal University B. Sadovaya str. 105/42, Rostov-on-Don 344006 Russian Federation
| |
Collapse
|
16
|
Rodríguez-Arco L, Poma A, Ruiz-Pérez L, Scarpa E, Ngamkham K, Battaglia G. Molecular bionics - engineering biomaterials at the molecular level using biological principles. Biomaterials 2018; 192:26-50. [PMID: 30419394 DOI: 10.1016/j.biomaterials.2018.10.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/06/2018] [Accepted: 10/28/2018] [Indexed: 12/18/2022]
Abstract
Life and biological units are the result of the supramolecular arrangement of many different types of molecules, all of them combined with exquisite precision to achieve specific functions. Taking inspiration from the design principles of nature allows engineering more efficient and compatible biomaterials. Indeed, bionic (from bion-, unit of life and -ic, like) materials have gained increasing attention in the last decades due to their ability to mimic some of the characteristics of nature systems, such as dynamism, selectivity, or signalling. However, there are still many challenges when it comes to their interaction with the human body, which hinder their further clinical development. Here we review some of the recent progress in the field of molecular bionics with the final aim of providing with design rules to ensure their stability in biological media as well as to engineer novel functionalities which enable navigating the human body.
Collapse
Affiliation(s)
- Laura Rodríguez-Arco
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK.
| | - Alessandro Poma
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK
| | - Lorena Ruiz-Pérez
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK; The EPRSC/Jeol Centre of Liquid Electron Microscopy, University College London, London, WC1H 0AJ, UK
| | - Edoardo Scarpa
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK
| | - Kamolchanok Ngamkham
- Faculty of Engineering, King Mongkut's University of Technology Thonbury, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand
| | - Giuseppe Battaglia
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK; The EPRSC/Jeol Centre of Liquid Electron Microscopy, University College London, London, WC1H 0AJ, UK.
| |
Collapse
|
17
|
Huang M, Lu J, Han B, Zhang X, Yang W. Synthesis of hypergrafted poly[4-(N,N-diphenylamino)methylstyrene] through tandem anionic-radical polymerization of radical-inimer. Des Monomers Polym 2018; 20:476-484. [PMID: 29491819 PMCID: PMC5784871 DOI: 10.1080/15685551.2017.1365577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/29/2017] [Indexed: 11/24/2022] Open
Abstract
In this paper, we present a tandem anionic-radical approach for synthesizing hypergrafted polymers. We prepared 4-(N,N-diphenylamino)methylstyrene (DPAMS) as a new radical-based inimer. Linear PDPAMS was prepared through anionic polymerization. Hypergrafted PDPAMS was synthesized through the self-condensing vinyl polymerization of DPAMS with linear PDPAMS. The linear backbone of PDPAMS, which incorporated latent radical initiating sites, served as a ‘hyperlinker’ to link hyperbranched side chains. The molecular weights of hypergrafted polymers increased as the length of the linear backbone chain increased. The hypergrafted structure of the resulting polymer was confirmed using a conventional gel permeation chromatograph apparatus equipped with a multiangle light scattering detector, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. This strategy can be applied to synthesize other complex architectures based on hyperbranched polymers by changing the structure of a polymer backbone through anionic polymerization.
Collapse
Affiliation(s)
- Minglu Huang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Jianmin Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Bingyong Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Xianhong Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
| |
Collapse
|
18
|
Synthesis of fluorescent dendrimers with aggregation-induced emission features through a one-pot multi-component reaction and their utilization for biological imaging. J Colloid Interface Sci 2018; 509:327-333. [PMID: 28918375 DOI: 10.1016/j.jcis.2017.09.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 01/15/2023]
Abstract
Hyperbranched polymers have attracted wide research attention owing to their unique topological structure, physicochemical properties and great potential for applications such asadditives, drug delivery, catalysts and nanotechnology. Among these, the polyamidoamine(PAMAM) dendrimers are some of the most important dendrimers. However, the synthesis and biomedical applications of fluorescent PAMAM dendrimers have received only limited attention. In this work, we present a rather effective and convenient approach for synthesis of fluorescent PAMAM dendrimers with aggregation-induced emission (AIE) properties through a one-pot catalyst-free Mannich reaction under rather mild experimental conditions (e.g., low reaction temperature, air atmosphere in the presence of water). The obtained AIE-active amphiphiles (PhE-PAD) could self-assemble into fluorescent organic nanoparticles (FONs). The obtained AIE-active FONs (PhE-PAD FONs) were fully characterized, and their successful construction was confirmed by 1H NMR spectroscopy, FT-IR spectroscopy and transmission electron microscopy. Fluorescence and UV-Visible absorption spectroscopy results demonstrated that the final PhE-PAD FONs showed strong yellow fluorescence, desirable photostability and good water dispersity. The cell viability evaluation and confocal laser scanning microscope imaging results suggested that PhE-PAD FONs possessed low cytotoxicity and excellent biocompatibility. Taken together, these results demonstrate that we have developed a facile and efficient strategy for the fabrication of AIE-active FONs, which possess many desirable features for biomedical applications.
Collapse
|
19
|
Preparation, Characterization and Application of UV-Curable Flexible Hyperbranched Polyurethane Acrylate. Polymers (Basel) 2017; 9:polym9110552. [PMID: 30965859 PMCID: PMC6419012 DOI: 10.3390/polym9110552] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 12/02/2022] Open
Abstract
A novel UV-curable hyperbranched polyurethane acrylate (FHBPUA) with excellent flexibility is successfully synthesized based on a reaction of hydroxyl terminated hyperbranched polyurethane (regarded as core) with flexible semiadduct urethane monoacrylate (regarded as arms). The structure and property of FHBPUA is firstly analyzed and then utilized as functional additives to ameliorate the UV-curing and mechanical properties of epoxy acrylate resin. The degree of branching of FHBPUA turns out to be 0.82. Its thermal decomposition process consists of three different stages, and the glass transition temperature is around 65 °C. The freestanding FHBPUA film (~30 μm thickness) can be UV-cured within 3 s, and its flexibility is up to 1 mm. With the increase of FHBPUA content to 10 wt %, the UV-curing time of UV1000 film decreases from 6 to 3 s, flexibility strikingly increases from 10 to 1 mm, and adhesive force also improves from 5 to 3 grades, meanwhile its glossiness is not influenced by FHBPUA. In addition, a certain amount of FHBPUA can improve the tensile strength and elongation at break of UV1000 film. This novel FHBPUA can be used not only to develop flexible UV-curable freestanding films but also as functional additives to perfect other UV-curable compositions like coatings, inks and 3D printed parts.
Collapse
|
20
|
Sathiyaraj S, Kumar KA, Jailani Shanavas AK, Sultan Nasar AS. The First Example of Bisindole-Based Polyurethane Dendrimers: Synthesis and Performance in DSSC. ChemistrySelect 2017. [DOI: 10.1002/slct.201701160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Kasza G, Stumphauser T, Nádor A, Osváth Z, Szarka G, Domján A, Mosnáček J, Iván B. Hyperbranched polyglycerol nanoparticles based multifunctional, nonmigrating hindered phenolic macromolecular antioxidants: Synthesis, characterization and its stabilization effect on poly(vinyl chloride). POLYMER 2017. [DOI: 10.1016/j.polymer.2017.07.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Perspectives on dendritic architectures and their biological applications: From core to cell. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:61-83. [PMID: 28564631 DOI: 10.1016/j.jphotobiol.2017.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/24/2022]
Abstract
The challenges of medicine today include the increasing stipulation for sensitive and effective systems that can improve the pathological responses with a simultaneous reduction in accumulation and drug side effects. The demand can be fulfilled through the advancements in nanomedicine that includes nanostructures and nanodevices for diagnosing, treating, and prevention of various diseases. In this respect, the nanoscience provides various novel techniques with carriers such as micelles, dendrimers, particles and vesicles for the transportation of active moieties. Further, an efficient way to improve these systems is through stimuli a responsive system that utilizes supramolecular hyperbranched structures to meet the above criteria. The stimuli-responsive dendritic architectures exhibit spatial, temporal, convenient, effective, safety and controlled drug release in response to specific trigger through electrostatic interactions plus π stacking. The stimuli-responsive systems are capable of sequestering the drug molecules underneath a predefined set of conditions and discharge them in a different environment through either exogenous or endogenous stimulus. The incorporation of photoresponsive moieties at various components of dendrimer such as core, branches or at the peripheral end exaggerates its significance in various allied fields of nanotechnology which includes sensors, photoswitch, electronic widgets and in drug delivery systems. This is due to the light instigated geometrical modifications at the core or at the surface molecules which generates huge conformational changes throughout the hyperbranched structure. Further, numerous synthetic methodologies have been investigated for utilization of dendrimers in therapeutic drug delivery and its applicability towards stimuli responsive systems such as photo-instigated, thermal-instigated, and pH-instigated hyperbranched structures and their advancement in the field of nanomedicine. This paper highlights the fascinating theoretical advances and principal mechanisms of dendrimer synthesis and their ability to capture light that strengthens its applicability from radiant energy to medical photonics.
Collapse
|
23
|
Kasza G, Kali G, Domján A, Pethő L, Szarka G, Iván B. Synthesis of Well-Defined Phthalimide Monofunctional Hyperbranched Polyglycerols and Its Transformation to Various Conjugation Relevant Functionalities. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | - Gergely Kali
- Organic
Macromolecular Chemistry, Saarland University, Campus C4.2, 166123 Saarbrücken, Germany
| | | | - Lilla Pethő
- MTA-ELTE
Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | | | | |
Collapse
|
24
|
Abbina S, Vappala S, Kumar P, Siren EMJ, La CC, Abbasi U, Brooks DE, Kizhakkedathu JN. Hyperbranched polyglycerols: recent advances in synthesis, biocompatibility and biomedical applications. J Mater Chem B 2017; 5:9249-9277. [DOI: 10.1039/c7tb02515g] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hyperbranched polyglycerol is one of the most widely studied biocompatible dendritic polymer and showed promising applications. Here, we summarized the recent advancements in the field.
Collapse
Affiliation(s)
- Srinivas Abbina
- Department of Pathology and Laboratory Medicine
- University of British Columbia
- Vancouver
- Canada
- Center for Blood Research
| | - Sreeparna Vappala
- Department of Pathology and Laboratory Medicine
- University of British Columbia
- Vancouver
- Canada
- Center for Blood Research
| | - Prashant Kumar
- Center for Blood Research
- University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| | - Erika M. J. Siren
- Center for Blood Research
- University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| | - Chanel C. La
- Center for Blood Research
- University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| | - Usama Abbasi
- Department of Pathology and Laboratory Medicine
- University of British Columbia
- Vancouver
- Canada
- Center for Blood Research
| | - Donald E. Brooks
- Department of Pathology and Laboratory Medicine
- University of British Columbia
- Vancouver
- Canada
- Center for Blood Research
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Laboratory Medicine
- University of British Columbia
- Vancouver
- Canada
- Center for Blood Research
| |
Collapse
|
25
|
Dzhardimalieva GI, Uflyand IE. Synthetic methodologies and spatial organization of metal chelate dendrimers and star and hyperbranched polymers. Dalton Trans 2017; 46:10139-10176. [DOI: 10.1039/c7dt01916e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthetic methodologies, physico-chemical peculiarities, properties, and structure of metal chelate dendrimers and star and hyperbranched polymers are considered.
Collapse
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers
- The Institute of Problems of Chemical Physics RAS
- Chernogolovka
- 142432 Russian Federation
| | - Igor E. Uflyand
- Department of Chemistry
- Southern Federal University
- Rostov-on-Don
- 344006 Russian Federation
| |
Collapse
|
26
|
Yang H, Wang Z, Cao L, Huang W, Jiang Q, Xue X, Song Y, Jiang B. Self-condensing reversible complexation-mediated copolymerization for highly branched polymers with in situ formed inimers. Polym Chem 2017. [DOI: 10.1039/c7py01560g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, reversible complexation-mediated polymerization (RCMP) was modified to suit self-condensing vinyl polymerization (SCVP) aimed at the synthesis of highly branched polymers.
Collapse
Affiliation(s)
- Hongjun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| | - Zhongrui Wang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| | - Lei Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| | - Wenyan Huang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| | - Qiming Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| | - Xiaoqiang Xue
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| | - Yiye Song
- Changzhou University Huaide College
- Jingjiang
- P. R. China 214500
| | - Bibiao Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| |
Collapse
|
27
|
Katir N, El Brahmi N, Marcotte N, Majoral JP, Bousmina M, El Kadib A. Orthogonal Synthesis of Covalent Polydendrimer Frameworks by Fusing Classical and Onion-Peel Phosphorus-Based Dendritic Units. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nadia Katir
- Euromed
Research Center, Engineering Division, Euro-Mediterranean University of Fes (UEMF), Fès-Shore, Route de Sidi Hrazem, 30070 Fès, Morocco
| | - Nabil El Brahmi
- Euromed
Research Center, Engineering Division, Euro-Mediterranean University of Fes (UEMF), Fès-Shore, Route de Sidi Hrazem, 30070 Fès, Morocco
| | - Nathalie Marcotte
- Institut
Charles Gerhardt UMR 5253, CNRS/ENSCM/UM, 8 rue de l’Ecole Normale, Montpellier F-34295 Cedex, France
| | - Jean Pierre Majoral
- Laboratoire
de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, 31077 Toulouse, France
| | - Mosto Bousmina
- Euromed
Research Center, Engineering Division, Euro-Mediterranean University of Fes (UEMF), Fès-Shore, Route de Sidi Hrazem, 30070 Fès, Morocco
| | - Abdelkrim El Kadib
- Euromed
Research Center, Engineering Division, Euro-Mediterranean University of Fes (UEMF), Fès-Shore, Route de Sidi Hrazem, 30070 Fès, Morocco
| |
Collapse
|
28
|
Wang S, Bian C, Jia B, Wang Y, Jing X. Structure and thermal pyrolysis mechanism of poly(resorcinol borate) with high char yield. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Chen H, Kong J. Hyperbranched polymers from A2 + B3 strategy: recent advances in description and control of fine topology. Polym Chem 2016. [DOI: 10.1039/c6py00409a] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in the fine topology regulation of hyperbranched polymers from an A2 + B3 strategy were presented from the perspectives of topology description and architecture control.
Collapse
Affiliation(s)
- Heng Chen
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Jie Kong
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| |
Collapse
|
30
|
Porous polymer monoliths: From their fundamental structure to analytical engineering applications. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.05.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Yao B, Hu T, Zhang H, Li J, Sun JZ, Qin A, Tang BZ. Multi-Functional Hyperbranched Poly(vinylene sulfide)s Constructed via Spontaneous Thiol–Yne Click Polymerization. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01868] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bicheng Yao
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ting Hu
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haoke Zhang
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jie Li
- Department of Chemistry, Institute for Advanced Study, Institute of Molecular Functional Materials, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Jing Zhi Sun
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Anjun Qin
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Guangdong
Innovative Research Team, State Key Laboratory of Luminescent Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Guangdong
Innovative Research Team, State Key Laboratory of Luminescent Materials
and Devices, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Institute for Advanced Study, Institute of Molecular Functional Materials, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong China
| |
Collapse
|
32
|
Dübner M, Gevrek TN, Sanyal A, Spencer ND, Padeste C. Fabrication of Thiol-Ene "Clickable" Copolymer-Brush Nanostructures on Polymeric Substrates via Extreme Ultraviolet Interference Lithography. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11337-11345. [PMID: 25978723 DOI: 10.1021/acsami.5b01804] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We demonstrate a new approach to grafting thiol-reactive nanopatterned copolymer-brush structures on polymeric substrates by means of extreme ultraviolet (EUV) interference lithography. The copolymer brushes were designed to contain maleimide functional groups as thiol-reactive centers. Fluoropolymer films were exposed to EUV radiation at the X-ray interference lithography beamline (XIL-II) at the Swiss Light Source, in order to create radical patterns on their surfaces. The radicals served as initiators for the copolymerization of thiol-ene "clickable" brushes, composed of a furan-protected maleimide monomer (FuMaMA) and different methacrylates, namely, methyl methacrylate (MMA), ethylene glycol methyl ether methacrylate (EGMA), or poly(ethylene glycol) methyl ether methacrylate (PEGMA). Copolymerization with ethylene-glycol-containing monomers provides antibiofouling properties to these surfaces. The number of reactive centers on the grafted brush structures can be tailored by varying the monomer ratios in the feed. Grafted copolymers were characterized by using attenuated total reflection infrared (ATR-IR) spectroscopy. The reactive maleimide methacrylate (MaMA) units were utilized to conjugate thiol-containing moieties using the nucleophilic Michael-addition reaction, which proceeds at room temperature without the need for any metal-based catalyst. Using this approach, a variety of functionalities was introduced to yield polyelectrolytes, as well as fluorescent and light-responsive polymer-brush structures. Functionalization of the brush structures was demonstrated via ATR-IR and UV-vis spectroscopy and fluorescence microscopy, and was also indicated by a color switch. Furthermore, grafted surfaces were generated via plasma activation, showing a strongly increased wettability for polyelectrolytes and a reversible switch in static water contact angle (CA) of up to 18° for P(EGMA-co-MaMA-SP) brushes, upon exposure to alternating visible and UV-light irradiation.
Collapse
Affiliation(s)
- Matthias Dübner
- †Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- ‡Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Tugce N Gevrek
- §Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | - Amitav Sanyal
- §Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | - Nicholas D Spencer
- ‡Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Celestino Padeste
- †Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
33
|
Yang H, Bai T, Xue X, Huang W, Chen J, Qian X, Zhang G, Jiang B. A versatile strategy for synthesis of hyperbranched polymers with commercially available methacrylate inimer. RSC Adv 2015. [DOI: 10.1039/c5ra09851c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This work reported a facile strategy to synthesize hyperbranched polymers by simply using a commercially available hydroxyl-substituted methacrylate, which can be applied to not only the SCVP of vinyl monomers, but also to the SCROP of cyclic esters.
Collapse
Affiliation(s)
- Hongjun Yang
- Jiangsu Key Laboratory of Materials Surface Science and Technology
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| | - Tao Bai
- Jiangsu Key Laboratory of Materials Surface Science and Technology
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| | - Xiaoqiang Xue
- Jiangsu Key Laboratory of Materials Surface Science and Technology
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| | - Wenyan Huang
- Jiangsu Key Laboratory of Materials Surface Science and Technology
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| | - Jianhai Chen
- Jiangsu Key Laboratory of Materials Surface Science and Technology
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| | - Xiaolei Qian
- Jiangsu Key Laboratory of Materials Surface Science and Technology
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- P. R. China 510640
| | - Bibiao Jiang
- Jiangsu Key Laboratory of Materials Surface Science and Technology
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| |
Collapse
|