1
|
Mukherjee S, Reddy SMM, Shanmugam G. A bio-inspired silkworm 3D cocoon-like hierarchical self-assembled structure from π-conjugated natural aromatic amino acids. SOFT MATTER 2024; 20:1834-1845. [PMID: 38314911 DOI: 10.1039/d3sm01746j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The formation of spontaneous 3D self-assembled hierarchical structures from 1D nanofibers is a significant breakthrough in materials science. Overcoming the major challenges associated with developing these 3D structures, such as uncontrolled self-assembly, complex procedures, and machinery, has been a formidable task. However, the current discovery reveals that simple π-system (fluorenyl)-functionalized natural aromatic amino acids, phenylalanine (Fmoc-F) and tyrosine (Fmoc-Y), can form bio-inspired 3D cocoon-like structures. These structures are composed of entangled 1D nanofibers created through supramolecular self-assembly using a straightforward one-step process of solvent casting. The self-assembly process relies on π-π stacking of the fluorenyl (π-system) moieties and intermolecular hydrogen bonding between urethane amide groups. The cocoon-like structures are versatile and independent of concentration, temperature, and humidity, making them suitable for various applications. This discovery has profound implications for materials science and the developed advanced biomaterials, such as Fmoc-F and Fmoc-Y, can serve as flexible foundational components for constructing 3D fiber-based structures.
Collapse
Affiliation(s)
- Smriti Mukherjee
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI) (CSIR-CLRI), Adyar, Chennai, 600020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Samala Murali Mohan Reddy
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI) (CSIR-CLRI), Adyar, Chennai, 600020, India.
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI) (CSIR-CLRI), Adyar, Chennai, 600020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
2
|
Zhu Y, Liu P, Zhang J, Hu J, Zhao Y. Facile synthesis of monocyclic, dumbbell-shaped and jellyfish-like copolymers using a telechelic multisite hexablock copolymer. Polym Chem 2022. [DOI: 10.1039/d2py00824f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterofunctional hexablock copolymer comprising alternating reactive and non-reactive blocks is designed to generate cyclic, dumbbell-shaped and jellyfish-like copolymers.
Collapse
Affiliation(s)
- Yingsheng Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiaman Hu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Bag S, Ghosh S, Paul S, Khan MEH, De P. Styrene-Maleimide/Maleic Anhydride Alternating Copolymers: Recent Advances and Future Perspectives. Macromol Rapid Commun 2021; 42:e2100501. [PMID: 34597451 DOI: 10.1002/marc.202100501] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/13/2021] [Indexed: 12/15/2022]
Abstract
Alternating sequencing of styrene-maleimide/maleic anhydride (S-MI/MA) in the copolymer chain is known for a long time. But since early 2000, this class of copolymers has been extensively studied using various living/controlled polymerization techniques to design S-MI/MA alternating copolymers with tunable molecular weight, narrow dispersity (Ð), and precise chain-end functionality. The widespread diverse applications of this polymeric backbone are due to its ease of synthesis, cheap starting materials, high precision in alternating sequencing, and facile post-polymerization functionalization with simple organic reactions. Recently, S-MI/MA alternating copolymers have been rediscovered as novel polymers with unprecedented emissive behavior. It outperforms the traditional fluorophores with no aggregation caused quenching (ACQ), aqueous solubility, and greater cell viability. Herein, the origin of alternating sequence, synthesis, and recent (2010-Present) developments in applications of these polymers in different fields are elaborately discussed, including the advantages of the unconventional luminogenic property. This review article also highlights the future research directions of the versatile S-MI/MA copolymers.
Collapse
Affiliation(s)
- Sagar Bag
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Soumyadeep Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Soumya Paul
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Md Ezaz Hasan Khan
- School of General Education, College of the North Atlantic - Qatar, Arab League Street, Doha, 24449, Qatar
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| |
Collapse
|
4
|
Zhang X, Huang Q, Wang F, Sun H, Xiao J, Cornel EJ, Zhu Y, Du J. Giant Polymer Vesicles with a Latticelike Membrane. ACS Macro Lett 2021; 10:1015-1022. [PMID: 35549122 DOI: 10.1021/acsmacrolett.1c00254] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hierarchical self-assembly offers great possibilities to mimic biological systems with finely arranged complex structures. Herein, we demonstrate the preparation and formation mechanism of an unusual giant polymer vesicle with a latticelike membrane (GVLM). This GVLM is formed by fusion-induced particle assembly (FIPA) of small vesicles that are self-assembled from poly(ethylene oxide)-block-poly[(2-(tetrahydrofuranyloxy)ethyl methacrylate)-stat-(6-(3,3-diphenylnaphthopyranyloxy)hexyl methacrylate)] [PEO43-b-P(TMA22-stat-NMA4)]. Flexible TMA units with high chain mobility and relatively rigid NMA units with intrinsic π-π stacking form the hydrophobic block. These units act as "antifusion" and "profusion" components, respectively. The latticelike membrane of the final GVLM consists of hundreds of small polymer vesicles that are interconnected via multiple interactions. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) studies show that the diameter of the GVLMs is 800-1000 nm. Overall, we provide a new insight into the judicious preparation of hierarchical nanostructures via chemical synthesis and FIPA.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Qiutong Huang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Fangyingkai Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Hui Sun
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jiangang Xiao
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Erik Jan Cornel
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yunqing Zhu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
5
|
Affiliation(s)
- Jiangang Xiao
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
6
|
Hu Y, Chen Y, Du J. Evolution of diverse higher-order membrane structures of block copolymer vesicles. Polym Chem 2019. [DOI: 10.1039/c8py01463a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An evolutionary route to polymer vesicles with diverse higher-order membrane structures has been discovered.
Collapse
Affiliation(s)
- Yu Hu
- Department of Orthopedics
- Shanghai Tenth People's Hospital
- Tongji University School of Medicine
- Shanghai 200072
- China
| | - Yongming Chen
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
- Key Laboratory of Polymer Physics and Chemistry
| | - Jianzhong Du
- Department of Orthopedics
- Shanghai Tenth People's Hospital
- Tongji University School of Medicine
- Shanghai 200072
- China
| |
Collapse
|
7
|
Zhao Y. Facile Synthesis and Topological Transformation of Multicomponent Miktoarm Star Copolymers. Macromol Rapid Commun 2018; 40:e1800571. [DOI: 10.1002/marc.201800571] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision SynthesisJiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationState and Local Joint Engineering Laboratory for Novel Functional Polymeric MaterialsCollege of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| |
Collapse
|
8
|
Zhou T, Han B, Qi H, Pan Q, Smith DM, Han L, Li CY. Velcro-mimicking surface based on polymer loop brushes. NANOSCALE 2018; 10:18269-18274. [PMID: 30246845 DOI: 10.1039/c8nr05526b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We herein report the fabrication of a Velcro-mimicking surface based on polymer brushes. Using poly(ε-caprolactone) (PCL) as the model polymer, polymer loop brushes (PLBs) and singly tethered polymer brushes (STPBs) with nearly identical tethering point density and brush heights were synthesized using a polymer single crystal (PSC)-assisted grafting-to method. Atomic force microscopy-based single molecular force spectroscopy (AFM-SMFS) and macroscale lap-shear experiments both demonstrated that the PLBs led to strong adhesion that is up to ∼10 times greater than the STPBs, which is attributed to the enriched chain entanglement between the probing polymer and the brushes. We envisage that our results will pave the way towards a new materials design for strong adhesives and nanocomposites.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Wu W, Dai W, Zhao X, Zhang J, Zhao Y. Synthesis, self-assembly and drug release behaviors of reduction-labile multi-responsive block miktobrush quaterpolymers with linear and V-shaped grafts. Polym Chem 2018. [DOI: 10.1039/c8py00245b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stimuli-tunable topological/morphological transitions and drug release properties based on novel disulfide-functionalized coil–comb–coil quaterpolymers were revealed.
Collapse
Affiliation(s)
- Wentao Wu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Wenxue Dai
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiaoqi Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
10
|
Bai Y, Xie FY, Tian W. Controlled Self-assembly of Thermo-responsive Amphiphilic H-shaped Polymer for Adjustable Drug Release. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2086-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Tesch M, Kudruk S, Letzel M, Studer A. Orthogonal Click Postfunctionalization of Alternating Copolymers Prepared by Nitroxide-Mediated Polymerization. Chemistry 2017; 23:5915-5919. [DOI: 10.1002/chem.201605639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Matthias Tesch
- Organic Chemistry Institute; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Sergej Kudruk
- Organic Chemistry Institute; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Matthias Letzel
- Organic Chemistry Institute; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Armido Studer
- Organic Chemistry Institute; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
12
|
Cheng X, Jin Y, Fan B, Qi R, Li H, Fan W. Self-Assembly of Polyurethane Phosphate Ester with Phospholipid-Like Structures: Spherical, Worm-Like Micelles, Vesicles, and Large Compound Vesicles. ACS Macro Lett 2016; 5:238-243. [PMID: 35614685 DOI: 10.1021/acsmacrolett.5b00789] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we report the preparation and self-assembly of amphiphilic polyurethane phosphate ester (PUP) polymers with phospholipid-like structures. The polymers, designed to have a hydrophilic phosphate head and two amphiphilic PPG-IPDI-MPEG (PU) tails were synthesized via coupling and phosphorylation reactions in sequence. These amphiphilic polymers could self-assemble into various interesting nanostructures in aqueous solution, such as spherical, worm-like micelles, vesicles, and large compound vesicles, depending on the hydrophobic chain length of PU tails and the initial polymer concentrations. It was found that the morphology transition is not only caused by the unique molecular structure of amphiphilic polyurethanes, but also influenced by the additional hydrophilic phosphate groups incorporated, which disturb the force balance governing the aggregation structures. This research supplies a new clue for the fabrication of well-defined nanostructures.
Collapse
Affiliation(s)
- Xinfeng Cheng
- Chengdu Institute of Organic
Chemistry, Chinese Academy of Science, Center of Polymer Science and Technology, Chengdu 610041, People’s Republic of China
- University of
Chinese Academy of Sciences, No.19A
Yuquan Road, Beijing 100049, People’s Republic of China
| | - Yong Jin
- National
Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, People’s Republic of China
- Key
Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, People’s Republic of China
| | - Baozhu Fan
- Chengdu Institute of Organic
Chemistry, Chinese Academy of Science, Center of Polymer Science and Technology, Chengdu 610041, People’s Republic of China
- University of
Chinese Academy of Sciences, No.19A
Yuquan Road, Beijing 100049, People’s Republic of China
| | - Rui Qi
- Chengdu Institute of Organic
Chemistry, Chinese Academy of Science, Center of Polymer Science and Technology, Chengdu 610041, People’s Republic of China
- University of
Chinese Academy of Sciences, No.19A
Yuquan Road, Beijing 100049, People’s Republic of China
| | - Hanping Li
- National
Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, People’s Republic of China
- Key
Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, People’s Republic of China
| | - Wuhou Fan
- National
Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, People’s Republic of China
- Key
Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, People’s Republic of China
| |
Collapse
|
13
|
Tong M, An X, Pan W, Liu H, Zhao Y. Synthesis and properties of stimuli-sensitive heterografted toothbrush-like terpolymers with a linear handle and two types of V-shaped grafts. Polym Chem 2016. [DOI: 10.1039/c6py00182c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Straightforward syntheses were performed to generate amphiphilic heterograftedPNIPAM(PAA)2m(PCL)2mcopolymers, which could self-assemble into versatile nanoobjects for thermo, pH and additive triggered controlled release of doxorubicin.
Collapse
Affiliation(s)
- Min Tong
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiaonan An
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Weidong Pan
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Huanhuan Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
14
|
Yang B, Huang Q, Liu H, Zhao Y, Du J. Hairy cylinders based on a coil-comb-coil copolymer. RSC Adv 2016. [DOI: 10.1039/c6ra20862b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We present the preparation and possible formation mechanism of hairy cylinders self-assembled from a coil-comb-coil copolymer.
Collapse
Affiliation(s)
- Bo Yang
- Department of Polymeric Materials
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education
- Tongji University
- Shanghai 201804
| | - Qiutong Huang
- Department of Polymeric Materials
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education
- Tongji University
- Shanghai 201804
| | - Huanhuan Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
| | - Jianzhong Du
- Department of Polymeric Materials
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education
- Tongji University
- Shanghai 201804
| |
Collapse
|
15
|
Wang T, Jiang J, Xiao Y, Zou Y, Gao J, Du J. Preparation of polymersomes in pure water for facile antibacterial applications. RSC Adv 2015. [DOI: 10.1039/c5ra10511k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We report the facile synthesis of antibacterial polymersomes in pure water, which show good antibacterial activities against both Gram-positive and Gram-negative bacteria and can be sprayed in places which are susceptible to bacterial attack.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education
- Department of Polymeric Materials
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| | - Jinhui Jiang
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education
- Department of Polymeric Materials
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| | - Yufen Xiao
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education
- Department of Polymeric Materials
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| | - Yijie Zou
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education
- Department of Polymeric Materials
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| | - Jingyi Gao
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education
- Department of Polymeric Materials
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| | - Jianzhong Du
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education
- Department of Polymeric Materials
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| |
Collapse
|
16
|
Liu H, Li C, Tang D, An X, Guo Y, Zhao Y. Multi-responsive graft copolymer micelles comprising acetal and disulfide linkages for stimuli-triggered drug delivery. J Mater Chem B 2015; 3:3959-3971. [DOI: 10.1039/c5tb00473j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dual-cleavable polymeric aggregates were efficiently used for thermo-, pH and reduction triggered controlled release of doxorubicin due to the stimuli-dependent topological transformation and reaggregation of copolymer aggregates.
Collapse
Affiliation(s)
- Huanhuan Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Cangxia Li
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Dandan Tang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiaonan An
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Yanfei Guo
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|