1
|
Wang WL, Kawai K, Sigemitsu H, Jin RH. Crystalline lamellar films with honeycomb structure from comb-like polymers of poly(2-long-alkyl-2-oxazoline)s. J Colloid Interface Sci 2022; 627:28-39. [PMID: 35841706 DOI: 10.1016/j.jcis.2022.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
Comb-like copolymers are usually structured by grafting polymeric side chains onto main polymer chain. There are few reports of comb-on-comb polymers in which dense secondary side chains are grafted onto primary side chain. In this work, we synthesized comb polymers with grafted-on-graft side chains (c-PEI-g-Acyl) via an effective acylation reaction of comb polymers possessing polyethyleneimine (PEI) side chain with long-alkyl acyl chlorides. For comparison, we also synthesized homopolymers l-PEI-g-Acyls via reaction of linear PEI with long-alkyl acyl chlorides. Then, we investigated their crystalline feature in the film formation by XRD, DSC and SEM, and found that the polymers tend to form hexagonal lamella structures with bilayer alkyl spacing. The comb polymers c-PEI-g-Acyls and linear polymers l-PEI-g-Acyls were used in preparation of honeycomb film by the "breath-figure" process by dropping chloroform solution of the polymers on substrate. Different to many honeycomb polymeric films which are supported by amorphous phase, interestingly, our polymers easily afford honeycomb films which are supported by crystalline lamellae frames under higher humidity condition. It was found that the comb polymers of c-PEI-g-Acyls with longer PEI primary side chain and long alkyl secondary side chain have advantages in producing honeycomb film than linear polymers of l-PEI-g-Acys.
Collapse
Affiliation(s)
- Wen-Li Wang
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan
| | - Kousuke Kawai
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan
| | - Hiroaki Sigemitsu
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan
| | - Ren-Hua Jin
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan.
| |
Collapse
|
2
|
Sun X, Yu X, Cheng F, He W. Cationic polymeric template-mediated preparation of silica nanocomposites. SOFT MATTER 2021; 17:8995-9007. [PMID: 34611687 DOI: 10.1039/d1sm00773d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biosilicification allows the formation of complex and delicate biogenic silica in near-neutral solutions under ambient conditions. Studies have revealed that, during biosilicification, basic amino acid residues and long-chain polyamines of organic substrates interact electrostatically with negatively charged silicate precursors in solution, catalyzing the polycondensation of silicic acid and accelerating the formation of silica. This mechanism has inspired researchers to explore polymers bearing chemical similarity with these organic matrices as cationic templates for biomimetic silicification. Such templates can be classified into two general categories based on the physical forms applied. One is a solution of water-soluble cationic polymers, either natural or synthetic, used as is for silicification. The other category includes various microscopically shaped entities made of cationic polymer-containing molecules, in the form of micelles, vesicles, crystalline aggregates, latex particles, and microgels. Combined with controlled polymerization and other techniques, these preorganized templates can be tailor designed in terms of sizes and morphologies to allow further expansion of properties and functions. In this review, notable research progress for both categories of silicification under biomimetic conditions is discussed. With the merits of silica and cationic polymers seamlessly integrated, the potential of such versatile nanocomposites in biomedical as well as energy and environmental applications is also briefly highlighted.
Collapse
Affiliation(s)
- Xiaoning Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116023, China.
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116023, China
| | - Xueying Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116023, China.
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116023, China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116023, China.
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116023, China
| | - Wei He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116023, China.
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116023, China
| |
Collapse
|
3
|
Wang WL, Jin RH. Synthesis and self-assembly of amphiphilic comb-copolymers possessing polyethyleneimine and its derivatives: Site-selective formation of loop-cluster covered vesicles and flower micelles. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4
|
Wang WL, Jin RH. A unique polymersome covered by loop-cluster polyamine corona. RSC Adv 2020; 10:13260-13266. [PMID: 35492089 PMCID: PMC9051450 DOI: 10.1039/c9ra10704e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/22/2020] [Indexed: 01/16/2023] Open
Abstract
The comb with teeth of amphiphilic block copolymer possessing hydrophilic polyethyleneimine (inside) and hydrophobic poly(2-phenyl-2-oxazoline) (outside) self-assembled into extremely stable loop-cluster covered polymersome with very thin vesicular wall (ca. 3 nm).
Collapse
Affiliation(s)
- Wen-Li Wang
- Department of Material and Life Chemistry
- Kanagawa University
- Yokohama 221-8686
- Japan
| | - Ren-Hua Jin
- Department of Material and Life Chemistry
- Kanagawa University
- Yokohama 221-8686
- Japan
| |
Collapse
|
5
|
Takebuchi H, Kubosawa H, Jin RH. Synthesis and Thermo-responsiveness of Double Hydrophilic Block Copolymers with PNIPAM Coils and Poly(methyloxazoline)/Poly(ethyleneimine) Combs. CHEM LETT 2019. [DOI: 10.1246/cl.190204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Haruka Takebuchi
- Department of Material and Life Chemistry, Kanagawa University, 3-2-7 Rokkakubashi, Yokohama, Kanagawa 221-8686, Japan
| | - Hiroki Kubosawa
- Department of Material and Life Chemistry, Kanagawa University, 3-2-7 Rokkakubashi, Yokohama, Kanagawa 221-8686, Japan
| | - Ren-Hua Jin
- Department of Material and Life Chemistry, Kanagawa University, 3-2-7 Rokkakubashi, Yokohama, Kanagawa 221-8686, Japan
| |
Collapse
|
6
|
Soma D, Jin RH. Biomimetic silica deposition promoted by sub-5 μm complexes of dicarboxylic acids/polyethyleneimine microballs: a new approach to tuning silica structures using messenger-like dicarboxylic acids. RSC Adv 2018. [DOI: 10.1039/c7ra12413a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acid–base complexes prepared from sub-5 μm polyethyleneimine microballs and dicarboxylic acids promoted silica deposition to give silica microballs with different morphological surface structures which were controlled by the structures of the acids.
Collapse
Affiliation(s)
- Daiki Soma
- Department of Material and Life Chemistry
- Kanagawa University
- Yokohama 221-8686
- Japan
| | - Ren-Hua Jin
- Department of Material and Life Chemistry
- Kanagawa University
- Yokohama 221-8686
- Japan
| |
Collapse
|
7
|
Chu Y, Li H, Huang H, Zhou H, Chen Y, Andreas B, Liu L, Chen Y. Uni-molecular nanoparticles of poly(2-oxazoline) showing tunable thermoresponsive behaviors. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yuehuan Chu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education; Sun Yat-sen University, No. 135, Xingang Xi Road; Guangzhou 510275 China
| | - Huaan Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education; Sun Yat-sen University, No. 135, Xingang Xi Road; Guangzhou 510275 China
| | - Huahua Huang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education; Sun Yat-sen University, No. 135, Xingang Xi Road; Guangzhou 510275 China
| | - Houbo Zhou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education; Sun Yat-sen University, No. 135, Xingang Xi Road; Guangzhou 510275 China
| | - Yi Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education; Sun Yat-sen University, No. 135, Xingang Xi Road; Guangzhou 510275 China
| | - Böckler Andreas
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education; Sun Yat-sen University, No. 135, Xingang Xi Road; Guangzhou 510275 China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education; Sun Yat-sen University, No. 135, Xingang Xi Road; Guangzhou 510275 China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education; Sun Yat-sen University, No. 135, Xingang Xi Road; Guangzhou 510275 China
| |
Collapse
|
8
|
Bai Y, Ma X, Wang W, Yin Q, Du Z, Wang G. Synthesis, aggregation and dispersity properties of novels amphiphilic comb-like terpolymers. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Soma D, Jin RH. Sub-5 μm balls possessing forest-like poly(methyloxazoline)/polyethyleneimine side chains and templated silica microballs with unusual internal structures. RSC Adv 2017. [DOI: 10.1039/c7ra05329k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein, sub-5 μm microballs, with unusual forest-like structures consisting of a polystyrene network and forest-like poly(2-methyl-2-oxazoline) (PMOZ) and/or linear polyethyleneimine (LPEI) side chains, were synthesized by combining two isolated processes.
Collapse
Affiliation(s)
- Daiki Soma
- Department of Material and Life Chemistry
- Faculty of Engineering
- Kanagawa University
- Yokohama 221-8686
- Japan
| | - Ren-Hua Jin
- Department of Material and Life Chemistry
- Faculty of Engineering
- Kanagawa University
- Yokohama 221-8686
- Japan
| |
Collapse
|
10
|
|
11
|
Yao DD, Kubosawa H, Souma D, Jin RH. Shaped crystalline aggregates of comb-like polyethyleneimine for biomimetic synthesis of inorganic silica materials. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.01.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Yao DD, Murata H, Tsunega S, Jin RH. Chiral SiO2and Ag@SiO2Materials Templated by Complexes Consisting of Comblike Polyethyleneimine and Tartaric Acid. Chemistry 2015; 21:15667-75. [DOI: 10.1002/chem.201502290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Indexed: 11/11/2022]
|