1
|
Sarabia-Vallejos MA, Romero De la Fuente S, Cohn-Inostroza NA, Terraza CA, Rodríguez-Hernández J, González-Henríquez CM. Development of Soft Wrinkled Micropatterns on the Surface of 3D-Printed Hydrogel-Based Scaffolds via High-Resolution Digital Light Processing. Gels 2024; 10:761. [PMID: 39727518 DOI: 10.3390/gels10120761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
The preparation of sophisticated hierarchically structured and cytocompatible hydrogel scaffolds is presented. For this purpose, a photosensitive resin was developed, printability was evaluated, and the optimal conditions for 3D printing were investigated. The design and fabrication by additive manufacturing of tailor-made porous scaffolds were combined with the formation of surface wrinkled micropatterns. This enabled the combination of micrometer-sized channels (100-200 microns) with microstructured wrinkled surfaces (1-3 μm wavelength). The internal pore structure was found to play a critical role in the mechanical properties. More precisely, the TPMS structure with a zero local curvature appears to be an excellent candidate for maintaining its mechanical resistance to compression stress, thus retaining its structural integrity upon large uniaxial deformations up to 70%. Finally, the washing conditions selected enabled us to produce noncytotoxic materials, as evidenced by experiments using AlamarBlue to follow the metabolic activity of the cells.
Collapse
Affiliation(s)
| | - Scarleth Romero De la Fuente
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Ignacio Valdivieso 2409, Santiago 8940000, Chile
| | - Nicolás A Cohn-Inostroza
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Ignacio Valdivieso 2409, Santiago 8940000, Chile
| | - Claudio A Terraza
- Research Laboratory for Organic Polymer (RLOP), Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), 28006 Madrid, Spain
| | - Carmen M González-Henríquez
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Ignacio Valdivieso 2409, Santiago 8940000, Chile
| |
Collapse
|
2
|
Loginova TP, Khotina IA, Kabachii YA, Kochev SY, Abramov VM, Khlebnikov VS, Kulikova NL, Mezhuev YO. Promising Gene Delivery Properties of Polycations Based on 2-(N, N-dimethylamino)ethyl Methacrylate and Polyethylene Glycol Monomethyl Ether Methacrylate Copolymers. Polymers (Basel) 2023; 15:3036. [PMID: 37514425 PMCID: PMC10383831 DOI: 10.3390/polym15143036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Cationic copolymers based on 2-(N,N-dimethylamino)ethyl methacrylate and polyethylene glycol monomethyl ether (pDMAEMA-co-PEO) with different molecular weights have been synthesized. Their physicochemical properties were studied by NMR spectroscopy, sedimentation, and potentiometric titration. According to the data of potentiometric titration for the synthesized pegylated cationic copolymers, the apparent dissociation constants were determined in the pH range from 4.5 to 8.5. The physicochemical properties of interpolyelectrolyte complexes of these polycations with circular DNA (IPEC DNA) were also studied by dynamic light scattering, electrophoretic mobility, and TEM methods. It has been established that the diameter and electrokinetic potential (ζ-potential) of interpolyelectrolyte complexes can be varied over a wide range (from 200 nm to 1.5 μm and from -25 mV to +30 mV) by changing the ratio of oppositely charged ionizable groups in pegylated cationic copolymers and DNA, as well as by regulating medium pH. The resistance of the IPEC DNA/polycation complex to the action of nucleases was studied by electrophoresis in agarose gel; the cytotoxic effect of the polymers in vitro, and the efficiency of penetration (transfection) of IPEC DNA with PDMAEMA-co-PEO-polycations into eukaryotic cells of a cell line derived from human embryonic kidneys HEK 293 in vitro.
Collapse
Affiliation(s)
- Tatiana P Loginova
- A.N. Nesmeyanov Instituite of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, 119334 Moscow, Russia
| | - Irina A Khotina
- A.N. Nesmeyanov Instituite of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, 119334 Moscow, Russia
| | - Yurii A Kabachii
- A.N. Nesmeyanov Instituite of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, 119334 Moscow, Russia
| | - Sergei Yu Kochev
- A.N. Nesmeyanov Instituite of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, 119334 Moscow, Russia
| | - Vyacheslav M Abramov
- JSC Institute Immunological Engineering, Nauchnaya street 1, 142380 Lybuchany, Moscow District, Moscow Region, Russia
| | - Valentin S Khlebnikov
- JSC Institute Immunological Engineering, Nauchnaya street 1, 142380 Lybuchany, Moscow District, Moscow Region, Russia
| | - Natalia L Kulikova
- JSC Institute Immunological Engineering, Nauchnaya street 1, 142380 Lybuchany, Moscow District, Moscow Region, Russia
| | - Yaroslav O Mezhuev
- A.N. Nesmeyanov Instituite of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, 119334 Moscow, Russia
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| |
Collapse
|
3
|
Angelescu DG. Structural behavior of amphiphilic polyion complexes interacting with saturated lipid membranes investigated by coarse-grained molecular dynamic simulations. RSC Adv 2020; 10:39204-39216. [PMID: 35518426 PMCID: PMC9057367 DOI: 10.1039/d0ra06894b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/16/2020] [Indexed: 11/21/2022] Open
Abstract
Neutral polyelectrolyte complexes (PECs) made from an amphiphilic multiblock copolymer of type (AnBn)m and an oppositely charged polyion and interacting with a dipalmitoylphosphatidylcholine (DPPC) lipid membrane.
Collapse
Affiliation(s)
- Daniel G. Angelescu
- Romanian Academy
- “Ilie Murgulescu” Institute of Physical Chemistry
- 060021 Bucharest
- Romania
| |
Collapse
|
4
|
Peng H, Rübsam K, Hu C, Jakob F, Schwaneberg U, Pich A. Stimuli-Responsive Poly( N-Vinyllactams) with Glycidyl Side Groups: Synthesis, Characterization, and Conjugation with Enzymes. Biomacromolecules 2019; 20:992-1006. [PMID: 30608144 DOI: 10.1021/acs.biomac.8b01608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein we report the synthesis of new reactive stimuli-responsive polymers by RAFT copolymerization of glycidyl methacrylate and three cyclic N-vinyllactam derivatives. The copolymerization process was thoroughly investigated and the influence of the steric hindrance originating from the monomer structure of cyclic N-vinyllactams on the polymerization process and the properties of obtained copolymers were studied. A series of water-soluble copolymers with variable chemical composition, controlled molecular weight and narrow dispersity ( Đ) were synthesized and their properties are systematically investigated. Experimentally determined cloud points for different copolymers in aqueous solutions indicate shift of lower critical solution temperature (LCST) to lower values with the increase of GMA content in copolymers and increase of the lactam ring size. The obtained reactive stimuli-responsive copolymers can be efficiently used for encapsulation of cellulase in water-in-oil emulsions forming biohybrid nanogels. The enzymes entrapped in nanogels demonstrated significantly improved resistance against harsh store conditions, chaotropic agents, and organic solvents.
Collapse
Affiliation(s)
- Huan Peng
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry , RWTH Aachen University , Aachen , Germany.,DWI Leibniz Institute for Interactive Materials e.V. , Aachen , Germany
| | - Kristin Rübsam
- DWI Leibniz Institute for Interactive Materials e.V. , Aachen , Germany
| | - Chaolei Hu
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry , RWTH Aachen University , Aachen , Germany.,DWI Leibniz Institute for Interactive Materials e.V. , Aachen , Germany
| | - Felix Jakob
- Institute for Biotechnology , RWTH Aachen University , Aachen , Germany.,DWI Leibniz Institute for Interactive Materials e.V. , Aachen , Germany
| | - Ulrich Schwaneberg
- Institute for Biotechnology , RWTH Aachen University , Aachen , Germany.,DWI Leibniz Institute for Interactive Materials e.V. , Aachen , Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry , RWTH Aachen University , Aachen , Germany.,DWI Leibniz Institute for Interactive Materials e.V. , Aachen , Germany
| |
Collapse
|
5
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
6
|
Redox-responsive PAEFc- b -PDMAEMA amphiphilic block copolymer self-assembly micelles: Physicochemical properties and anticancer drug controlled release. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Ting SRS, Min EH, Lau BKF, Hutvagner G. Acetyl-α-d-mannopyranose-based cationic polymer via RAFT polymerization for lectin and nucleic acid bindings. J Appl Polym Sci 2017. [DOI: 10.1002/app.44947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- S. R. Simon Ting
- Centre for Health Technologies (CHT); Faculty of Engineering and Information Technology, University of Technology Sydney (UTS); Ultimo NSW 2007 Australia
| | - Eun Hee Min
- Centre for Health Technologies (CHT); Faculty of Engineering and Information Technology, University of Technology Sydney (UTS); Ultimo NSW 2007 Australia
| | - Benjamin K. F. Lau
- Centre for Health Technologies (CHT); Faculty of Engineering and Information Technology, University of Technology Sydney (UTS); Ultimo NSW 2007 Australia
| | - Gyorgy Hutvagner
- Centre for Health Technologies (CHT); Faculty of Engineering and Information Technology, University of Technology Sydney (UTS); Ultimo NSW 2007 Australia
| |
Collapse
|
8
|
Lewis RW, Evans RA, Malic N, Saito K, Cameron NR. Cleavage of macromolecular RAFT chain transfer agents by sodium azide during characterization by aqueous GPC. Polym Chem 2017. [DOI: 10.1039/c7py00682a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Accurate and reliable analysis of polymers by GPC is vital in the field of controlled radical polymerisation.
Collapse
Affiliation(s)
- Reece W. Lewis
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
| | | | - Nino Malic
- CSIRO Manufacturing Flagship
- Clayton
- Australia
| | - Kei Saito
- School of Chemistry
- Monash University
- Clayton
- Australia
| | - Neil R. Cameron
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
- School of Engineering
| |
Collapse
|
9
|
Moraes J, Peltier R, Gody G, Blum M, Recalcati S, Klok HA, Perrier S. Influence of Block versus Random Monomer Distribution on the Cellular Uptake of Hydrophilic Copolymers. ACS Macro Lett 2016; 5:1416-1420. [PMID: 35651220 DOI: 10.1021/acsmacrolett.6b00652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of polymers has revolutionized the field of drug delivery in the past two decades. Properties such as polymer size, charge, hydrophilicity, or branching have all been shown to play an important role in the cellular internalization of polymeric systems. In contrast, the fundamental impact of monomer distribution on the resulting biological properties of copolymers remains poorly studied and is always only investigated for biologically active self-assembling polymeric systems. Here, we explore the fundamental influence of monomer distribution on the cellular uptake of nonaggregating and biologically passive copolymers. Reversible addition-fragmentation chain-transfer (RAFT) polymerization was used to prepare precisely defined copolymers of three hydrophilic acrylamide monomers. The cellular internalization of block copolymers was compared with the uptake of a random copolymer where monomers are statistically distributed along the chain. The results demonstrate that monomer distribution in itself has a negligible impact on copolymer uptake.
Collapse
Affiliation(s)
- John Moraes
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Raoul Peltier
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Guillaume Gody
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Muriel Blum
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Sebastien Recalcati
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Obata M, Otobuchi R, Kuroyanagi T, Takahashi M, Hirohara S. Synthesis of amphiphilic block copolymer consisting of glycopolymer and poly(l-lactide) and preparation of sugar-coated polymer aggregates. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Makoto Obata
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; 4-4-37 Takeda Kofu 400-8510 Japan
| | - Ryota Otobuchi
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; 4-4-37 Takeda Kofu 400-8510 Japan
| | - Tadao Kuroyanagi
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; 4-4-37 Takeda Kofu 400-8510 Japan
| | - Masaki Takahashi
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; 4-4-37 Takeda Kofu 400-8510 Japan
| | - Shiho Hirohara
- Department of Chemical and Biological Engineering; National Institute of Technology, Ube College; 2-14-1 Tokiwadai Ube 755-8555 Japan
| |
Collapse
|
11
|
Tengdelius M, Kardeby C, Fälker K, Griffith M, Påhlsson P, Konradsson P, Grenegård M. Fucoidan-Mimetic Glycopolymers as Tools for Studying Molecular and Cellular Responses in Human Blood Platelets. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/15/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Mattias Tengdelius
- Division of Organic Chemistry; Department of Physics; Biology and Chemistry (IFM); Linköping University; SE-581 83 Linköping Sweden
| | - Caroline Kardeby
- Cardiovascular Research Centre; School of Medical Sciences; Örebro University; SE-701 82 Örebro Sweden
| | - Knut Fälker
- Cardiovascular Research Centre; School of Medical Sciences; Örebro University; SE-701 82 Örebro Sweden
| | - May Griffith
- Division of Cell Biology; Department of Clinical and Experimental Medicine (IKE); Linköping University; SE-581 83 Linköping Sweden
| | - Peter Påhlsson
- Division of Cell Biology; Department of Clinical and Experimental Medicine (IKE); Linköping University; SE-581 83 Linköping Sweden
| | - Peter Konradsson
- Division of Organic Chemistry; Department of Physics; Biology and Chemistry (IFM); Linköping University; SE-581 83 Linköping Sweden
| | - Magnus Grenegård
- Cardiovascular Research Centre; School of Medical Sciences; Örebro University; SE-701 82 Örebro Sweden
| |
Collapse
|
12
|
Angelescu DG, Caragheorgheopol D. Investigating the effects of the copolymer architecture on the properties of the polyion complexes by Monte Carlo simulations. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3847-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Affiliation(s)
- Yoshiko Miura
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hirokazu Seto
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|