1
|
Jin J, Chen Y, Li H, Xu Y, Wang L. Loading polyaniline (PANI) nanoparticles to mesoporous hydroxyapatite (HAp) spheres for near infrared (NIR) induced doxorubicin (DOX) drug delivery and colon cancer treatment. Phys Chem Chem Phys 2024; 26:23277-23287. [PMID: 39196348 DOI: 10.1039/d4cp02509a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
In response to the pressing need for more efficient and targeted cancer therapies, this study presents the development of biodegradable hydroxyapatite/polyaniline (HAp/PANI) nanocomposite drug carriers for near-infrared (NIR)-induced drug delivery. The synthesis involved loading polyaniline onto mesoporous hydroxyapatite spheres, resulting in high drug loading capacity and tunable NIR responsiveness. The HAp/PANI spheres exhibited superior photothermal properties compared to pristine HAp under NIR irradiation, along with excellent biocompatibility. Importantly, the drug release behavior could be precisely controlled by adjusting NIR power and irradiation time, leading to enhanced anticancer efficacy against HCT-116 colorectal cancer cells. These findings highlight the potential of HAp/PANI mesoporous spheres as promising drug carriers for NIR-responsive cancer therapy.
Collapse
Affiliation(s)
- Jiamin Jin
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, P. R. China.
- School of Bioengineering, Dalian University of Technology, Liaoning, Dalian 116024, P. R. China.
- Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, P. R. China
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, P. R. China
| | - Yujing Chen
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, P. R. China
| | - Houzhong Li
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, P. R. China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Liaoning, Dalian 116024, P. R. China.
- Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, P. R. China
| | - Liyan Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, P. R. China.
| |
Collapse
|
2
|
Pati AR, Ko YS, Bae C, Choi I, Heo YJ, Lee C. Highly porous hydrogels for efficient solar water evaporation. SOFT MATTER 2024; 20:4988-4997. [PMID: 38884450 DOI: 10.1039/d4sm00388h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Solar energy is a plentiful renewable resource on Earth, with versatile applications in both domestic and industrial settings, particularly in solar steam generation (SSG). However, current SSG processes encounter challenges such as low efficiency and the requirement for extremely high concentrations of solar irradiation. Interfacial evaporation technology has emerged as a solution to these issues, offering improved solar performance compared to conventional SSG processes. Nonetheless, its implementation introduces additional complexities and costs to system construction. In this study, we present the development of hydrophilic, three-dimensional network-structured hydrogels with high porosity and swelling ratio using a facile fabrication technique. We systematically varied the mixing ratios of four key ingredients (polyethylene glycol diacrylate, PEGDA; polyethylene glycol methyl-ether acrylate, PEGMA; phosphate-buffered saline, PBS; and 2-hydroxy-2-methylpropiophenone, PI) to control the mean pore size and swelling ratio of the hydrogel. Additionally, plasmonic gold nanoparticles were incorporated into the hydrogel using a novel methodology to enhance solar light absorption and subsequent evaporation efficiency. The resulting material exhibited a remarkable solar efficiency of 77% and an evaporation rate of 1.6 kg m-2 h-1 under standard solar illumination (one sun), comparable to those of state-of-the-art SSG devices. This high efficiency can be attributed to the synergistic effects of the hydrogel's unique composition and nanoparticle concentration. These findings offer a promising avenue for the development of highly efficient solar-powered evaporation applications.
Collapse
Affiliation(s)
- Akash Ranjan Pati
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin-si 17104, Republic of Korea.
| | - Young-Su Ko
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin-si 17104, Republic of Korea.
| | - Changwoo Bae
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin-si 17104, Republic of Korea.
| | - Inhee Choi
- Department of Life Sciences, University of Seoul, Seoul 02504, Republic of Korea
| | - Yun Jung Heo
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin-si 17104, Republic of Korea.
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Choongyeop Lee
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin-si 17104, Republic of Korea.
| |
Collapse
|
3
|
Sulfite food additive electrochemical determination by nucleophilic addition on poly(4-aminodiphenylamine)-4-aminothiophenol-Au composite electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Tang H, Liu Y, Li B, Shang B, Yang J, Zhang C, Yang L, Chen K, Wang W, Liu J. Water-soluble PANI:PSS designed for spontaneous non-disruptive membrane penetration and direct intracellular photothermal damage on bacteria. Bioact Mater 2021; 6:4758-4771. [PMID: 34136724 PMCID: PMC8166762 DOI: 10.1016/j.bioactmat.2021.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
The major challenge in the field of antibacterial agents is to overcome the low-permeability of bacteria cell membranes that protects the cells against diverse drugs. In this work, water-soluble polyaniline (PANI)-poly (p-styrenesulfonic acid) (PSS) (PANI:PSS) is found to spontaneously penetrate bacteria cellular membranes in a non-disruptive way, leaving no evidence of membrane poration/disturbance or cell death, thus avoiding side effects caused by cationic ammonia groups in traditional ammonia-containing antibacterial agents. For aqueous synthesis, which is important for biocompatibility, the polymer is synthesized via an enzyme-mimetic route relying on the catalysis of a nanozyme. Owing to its fluorescent properties, the localization of as-prepared PANI:PSS is determined by the confocal microscope, and the results confirm its rapid entry into bacteria. Under 808 nm near-infrared (NIR) irradiation, the internalized PANI:PSS generates local hyperthermia and destroys bacteria highly efficiently from inside the cells due to its excellent photothermal effects. Staphylococcus aureus (S. aureus), M ethicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli) could be effectively eliminated as well as the corresponding bacterial biofilms. Results of in vivo antibacterial experiments demonstrate excellent antibacterial activities of the water-soluble PANI:PSS without side effects. Therefore, the prepared water-soluble polymer in this study has great potential in the treatment of various bacterial infections.
Collapse
Affiliation(s)
- Huanfeng Tang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yifan Liu
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Bing Li
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China
| | - Bo Shang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jiacheng Yang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Congrou Zhang
- Tianjin Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, And Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Lijun Yang
- Tianjin Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, And Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Kezheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Wei Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jianfeng Liu
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- Tianjin Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, And Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| |
Collapse
|
5
|
Heo MS, Kim TH, Chang YW, Jang KS. Near-Infrared Light-Responsive Shape Memory Polymer Fabricated from Reactive Melt Blending of Semicrystalline Maleated Polyolefin Elastomer and Polyaniline. Polymers (Basel) 2021; 13:3984. [PMID: 34833283 PMCID: PMC8618263 DOI: 10.3390/polym13223984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
A shape memory polymer was prepared by melt mixing a semicrystalline maleated polyolefin elastomer (mPOE) with a small amount of polyaniline (PANI) (up to 15 wt.%) in an internal mixer. Transmission electron microscopy (TEM), FTIR analysis, DMA, DSC, melt rheological analysis, and a tensile test were performed to characterize the structure and properties of the mPOE/PANI blends. The results revealed that the blends form a physically crosslinked network via the grafting of PANI onto the mPOE chains, and the PANI dispersed at the nanometer scale in the POE matrix served as a photo-thermal agent and provided increased crosslinking points. These structural features enabled the blends to exhibit a shape memory effect upon near-infrared (NIR) light irradiation. With increasing PANI content, the shape recovery rate of the blend under NIR stimulation was improved and reached 96% at 15 wt.% of PANI.
Collapse
Affiliation(s)
- Min-Su Heo
- Department of Materials & Chemical Engineering, Hanyang University, Ansan 15588, Gyeonggi-do, Korea; (M.-S.H.); (T.-H.K.)
| | - Tae-Hoon Kim
- Department of Materials & Chemical Engineering, Hanyang University, Ansan 15588, Gyeonggi-do, Korea; (M.-S.H.); (T.-H.K.)
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Gyeonggi-do, Korea
| | - Young-Wook Chang
- Department of Materials & Chemical Engineering, Hanyang University, Ansan 15588, Gyeonggi-do, Korea; (M.-S.H.); (T.-H.K.)
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Gyeonggi-do, Korea
| | - Keon Soo Jang
- Department of Polymer Engineering, School of Chemical and Materials Engineering, The University of Suwon, Hwaseong 18323, Gyeonggi-do, Korea;
| |
Collapse
|
6
|
Korupalli C, Kalluru P, Nuthalapati K, Kuthala N, Thangudu S, Vankayala R. Recent Advances of Polyaniline-Based Biomaterials for Phototherapeutic Treatments of Tumors and Bacterial Infections. Bioengineering (Basel) 2020; 7:E94. [PMID: 32823566 PMCID: PMC7552745 DOI: 10.3390/bioengineering7030094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023] Open
Abstract
Conventional treatments fail to completely eradicate tumor or bacterial infections due to their inherent shortcomings. In recent years, photothermal therapy (PTT) has emerged as an attractive treatment modality that relies on the absorption of photothermal agents (PTAs) at a specific wavelength, thereby transforming the excitation light energy into heat. The advantages of PTT are its high efficacy, specificity, and minimal damage to normal tissues. To this end, various inorganic nanomaterials such as gold nanostructures, carbon nanostructures, and transition metal dichalcogenides have been extensively explored for PTT applications. Subsequently, the focus has shifted to the development of polymeric PTAs, owing to their unique properties such as biodegradability, biocompatibility, non-immunogenicity, and low toxicity when compared to inorganic PTAs. Among various organic PTAs, polyaniline (PANI) is one of the best-known and earliest-reported organic PTAs. Hence, in this review, we cover the recent advances and progress of PANI-based biomaterials for PTT application in tumors and bacterial infections. The future prospects in this exciting area are also addressed.
Collapse
Affiliation(s)
- Chiranjeevi Korupalli
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Poliraju Kalluru
- Department of Chemistry, University of Calgary, Calgary, AB T2N1N4, Canada;
| | - Karthik Nuthalapati
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan; (K.N.); (N.K.); (S.T.)
| | - Naresh Kuthala
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan; (K.N.); (N.K.); (S.T.)
| | - Suresh Thangudu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan; (K.N.); (N.K.); (S.T.)
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| |
Collapse
|
7
|
Soysal F, Çıplak Z, Getiren B, Gökalp C, Yıldız N. Synthesis of GO-Fe3O4-PANI nanocomposite with excellent NIR absorption property. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123623] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Polyaniline-grafted nanodiamonds for efficient photothermal tumor therapy. Colloids Surf B Biointerfaces 2019; 180:273-280. [DOI: 10.1016/j.colsurfb.2019.04.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/09/2019] [Accepted: 04/29/2019] [Indexed: 01/16/2023]
|
9
|
Giacobbe S, Pezzella C, Della Ventura B, Giacobelli VG, Rossi M, Fontanarosa C, Amoresano A, Sannia G, Velotta R, Piscitelli A. Green synthesis of conductive polyaniline by Trametes versicolor laccase using a DNA template. Eng Life Sci 2019; 19:631-642. [PMID: 32625038 DOI: 10.1002/elsc.201900078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 11/06/2022] Open
Abstract
The green synthesis of highly conductive polyaniline by using two biological macromolecules, i.e laccase as biocatalyst, and DNA as template/dopant, was achieved in this work. Trametes versicolor laccase B (TvB) was found effective in oxidizing both aniline and its less toxic/mutagenic dimer N-phenyl-p-phenylenediamine (DANI) to conductive polyaniline. Reaction conditions for synthesis of conductive polyanilines were set-up, and structural and electrochemical properties of the two polymers were extensively investigated. When the less toxic aniline dimer was used as substrate, the polymerization reaction was faster and gave less-branched polymer. DNA was proven to work as hard template for both enzymatically synthesized polymers, conferring them a semi-ordered morphology. Moreover, DNA also acts as dopant leading to polymers with extraordinary conductive properties (∼6 S/cm). It can be envisaged that polymer properties are magnified by the concomitant action of DNA as template and dopant. Herein, the developed combination of laccase and DNA represents a breakthrough in the green synthesis of conductive materials.
Collapse
Affiliation(s)
- Simona Giacobbe
- Dipartimento di Scienze chimiche Università di Napoli "Federico II" Napoli Italy
| | - Cinzia Pezzella
- Dipartimento di Scienze chimiche Università di Napoli "Federico II" Napoli Italy
| | | | | | - Manuela Rossi
- Dipartimento di Scienze della Terra dell'Ambiente e delle Risorse Università di Napoli "Federico II" Napoli Italy
| | - Carolina Fontanarosa
- Dipartimento di Scienze chimiche Università di Napoli "Federico II" Napoli Italy
| | - Angela Amoresano
- Dipartimento di Scienze chimiche Università di Napoli "Federico II" Napoli Italy
| | - Giovanni Sannia
- Dipartimento di Scienze chimiche Università di Napoli "Federico II" Napoli Italy
| | - Raffaele Velotta
- Dipartimento di Fisica Ettore Pancini Università di Napoli "Federico II" Napoli Italy
| | | |
Collapse
|
10
|
Sun S, Wang P, Lu M. Design and controllable growth of stylish flower-like iron hydrogen phosphate peroxidase mimic with effective catalytic performance. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
11
|
He J, Li N, Bian K, Piao G. Optically active polyaniline film based on cellulose nanocrystals. Carbohydr Polym 2019; 208:398-403. [DOI: 10.1016/j.carbpol.2018.12.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 01/08/2023]
|
12
|
Kashima K, Fujisaki T, Serrano-Luginbühl S, Kissner R, Janošević Ležaić A, Bajuk-Bogdanović D, Ćirić-Marjanović G, Busato S, Ishikawa T, Walde P. Effect of Template Type on the Trametes versicolor Laccase-Catalyzed Oligomerization of the Aniline Dimer p-Aminodiphenylamine (PADPA). ACS OMEGA 2019; 4:2931-2947. [PMID: 31459521 PMCID: PMC6648283 DOI: 10.1021/acsomega.8b03441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/21/2019] [Indexed: 06/10/2023]
Abstract
Many previous studies have shown that (i) the oxidation of aniline or the aniline dimer p-aminodiphenylamine (PADPA) in a slightly acidic aqueous solution can be catalyzed with heme peroxidases or multicopper laccases and that (ii) subsequent reactions lead to oligomeric or polymeric products, which resemble chemically synthesized polyaniline in its conductive emeraldine salt form (PANI-ES), provided that (iii) an anionic "template" is present in the reaction medium. Good templates are anionic polyelectrolytes, micelles, or vesicles. Under optimal conditions, their presence directs the reactions in a positive way toward the desired formation of PANI-ES-type products. The effect of four different types of anionic templates on the formation of PANI-ES-like products from PADPA was investigated and compared by using Trametes versicolor laccase (TvL) as a catalyst in an aqueous pH 3.5 solution at room temperature. All four templates contain sulfonate groups: the sodium salt of the polyelectrolyte sulfonated polystyrene (SPS), micelles from sodium dodecylbenzenesulfonate (SDBS), vesicles from a 1:1 molar mixture of SDBS and decanoic acid, and vesicles from sodium bis(2-ethylhexyl)sulfosuccinate (AOT). Although with all four templates, stable, inkjet-printable solutions or suspensions consisting of PANI-ES-type products were obtained under optimized conditions, considerably higher amounts of TvL were required with SDBS micelles to achieve comparable monomer conversion to PANI-ES-like products during the same time period when compared to those with SPS or the two types of vesicles. This makes SDBS micelles less attractive as templates for the investigated reaction. In situ UV/vis/near-infrared, electron paramagnetic resonance (EPR), and Raman spectroscopy measurements in combination with an high-performance liquid chromatography analysis of extracted reaction products, which were deprotonated and chemically reduced, showed seemingly small but significant differences in the composition of the mixtures obtained when reaching reaction equilibrium after 24 h. With the two vesicle systems, the content of unwanted substituted phenazine units was lower than in the case of SPS polyelectrolyte and SDBS micelles. The EPR spectra indicate a more localized, narrower distribution of electronic states of the paramagnetic centers of the PANI-ES-type products synthesized in the presence of the two vesicle systems when compared to that of the similar products obtained with the SPS polyelectrolyte and SDBS micelles as templates. Overall, the data obtained from the different complementary methods indicate that with the two vesicle systems structurally more uniform (regular) PANI-ES-type products formed. Among the two investigated vesicle systems, for the investigated reaction (oxidation of PADPA with TvL and O2), AOT appears a somewhat better choice as it leads to a higher content of the PANI-ES polaron form.
Collapse
Affiliation(s)
- Keita Kashima
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Department
of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College, 771 Nakakuki, Oyama, Tochigi 323-0806, Japan
| | - Tomoyuki Fujisaki
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Department
of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College, 771 Nakakuki, Oyama, Tochigi 323-0806, Japan
| | | | - Reinhard Kissner
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | | | - Danica Bajuk-Bogdanović
- Faculty
of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Gordana Ćirić-Marjanović
- Faculty
of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Stephan Busato
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Takashi Ishikawa
- Department
of Biology and Chemistry, Paul Scherrer
Institute (PSI), CH-5231 Villigen, Switzerland
| | - Peter Walde
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
13
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 271.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
14
|
Yu X, Shou W, Mahajan BK, Huang X, Pan H. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707624. [PMID: 29736971 DOI: 10.1002/adma.201707624] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/05/2018] [Indexed: 05/21/2023]
Abstract
Bioresorbable electronics refer to a new class of advanced electronics that can completely dissolve or disintegrate with environmentally and biologically benign byproducts in water and biofluids. They have provided a solution to the growing electronic waste problem with applications in temporary usage of electronics such as implantable devices and environmental sensors. Bioresorbable materials such as biodegradable polymers, dissolvable conductors, semiconductors, and dielectrics are extensively studied, enabling massive progress of bioresorbable electronic devices. Processing and patterning of these materials are predominantly relying on vacuum-based fabrication methods so far. However, for the purpose of commercialization, nonvacuum, low-cost, and facile manufacturing/printing approaches are the need of the hour. Bioresorbable electronic materials are generally more chemically reactive than conventional electronic materials, which require particular attention in developing the low-cost manufacturing processes in ambient environment. This review focuses on material reactivity, ink availability, printability, and process compatibility for facile manufacturing of bioresorbable electronics.
Collapse
Affiliation(s)
- Xiaowei Yu
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65401, USA
| | - Wan Shou
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65401, USA
| | - Bikram K Mahajan
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65401, USA
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjing, 300072, China
| | - Heng Pan
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65401, USA
| |
Collapse
|
15
|
Wang L, Vivek R, Wu W, Wang G, Wang JY. Fabrication of Stable and Well-Dispersed Polyaniline–Polypyrrolidone Nanocomposite for Effective Photothermal Therapy. ACS Biomater Sci Eng 2018; 4:1880-1890. [DOI: 10.1021/acsbiomaterials.7b00910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Liping Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Raju Vivek
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Weifeng Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guowu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jin-Ye Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
16
|
Chen Q, Pei Z, Xu Y, Li Z, Yang Y, Wei Y, Ji Y. A durable monolithic polymer foam for efficient solar steam generation. Chem Sci 2018; 9:623-628. [PMID: 29629127 PMCID: PMC5868306 DOI: 10.1039/c7sc02967e] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/01/2017] [Indexed: 12/24/2022] Open
Abstract
Efficient and cost-effective solar steam generation requires self-floating evaporators which can convert light into heat, prevent unnecessary heat loss and greatly accelerate evaporation without solar concentrators. Currently, the most efficient evaporators (efficiency of ∼80% under 1 sun) are invariably built from inorganic materials, which are difficult to mold into monolithic sheets. Here, we present a new polymer which can be easily solution processed into a self-floating monolithic foam. The single-component foam can be used as an evaporator with an efficiency at 1 sun comparable to that of the best graphene-based evaporators. Even at 0.5 sun, the efficiency can reach 80%. Moreover, the foam is mechanically strong, thermally stable to 300 °C and chemically resistant to organic solvents.
Collapse
Affiliation(s)
- Qiaomei Chen
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , China . ;
| | - Zhiqiang Pei
- Simpson Querrey Institute for BioNanotechnology , Northwestern University , Chicago , Illinois 60611 , USA
| | - Yanshuang Xu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , China . ;
| | - Zhen Li
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , China . ;
| | - Yang Yang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , China . ;
| | - Yen Wei
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , China . ;
| | - Yan Ji
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , China . ;
| |
Collapse
|
17
|
Yue X, Zhang Q, Dai Z. Near-infrared light-activatable polymeric nanoformulations for combined therapy and imaging of cancer. Adv Drug Deliv Rev 2017; 115:155-170. [PMID: 28455188 DOI: 10.1016/j.addr.2017.04.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/16/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022]
Abstract
Near infrared (NIR) light allows deep tissue penetration and high spatial resolution due to the reduced scattering of long-wavelength photons. NIR light-activatable polymer nanoparticles are widely exploited for enhanced cancer imaging (diagnosis) and therapy owing to their superior photostability, photothermal conversion efficiency (or high emission rate), and minimal toxicity to cells and tissues. This review surveys the most recent advances in the synthesis of different NIR-absorbing and emissive polymer nanoformulations, and their applications for cancer imaging, photothermal therapy, theranostics and combination therapy by delivering multiple small molecule chemotherapeutics. Photo-responsive drug delivery systems for NIR light-triggered drug release are also discussed with particular emphasis on their molecular designs and formulations as well as photo-reaction mechanisms. Finally, outlook and challenges are presented regarding potential clinical applications of NIR light-activatable nanoformulations.
Collapse
Affiliation(s)
- Xiuli Yue
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, College of Engineering, College of Pharmaceutics, Peking University, Beijing 100871, China
| | - Zhifei Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, College of Engineering, College of Pharmaceutics, Peking University, Beijing 100871, China.
| |
Collapse
|
18
|
Photothermal and biodegradable polyaniline/porous silicon hybrid nanocomposites as drug carriers for combined chemo-photothermal therapy of cancer. Acta Biomater 2017; 51:197-208. [PMID: 28069501 DOI: 10.1016/j.actbio.2017.01.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/09/2016] [Accepted: 01/05/2017] [Indexed: 02/08/2023]
Abstract
To develop photothermal and biodegradable nanocarriers for combined chemo-photothermal therapy of cancer, polyaniline/porous silicon hybrid nanocomposites had been successfully fabricated via surface initiated polymerization of aniline onto porous silicon nanoparticles in our experiments. As-prepared polyaniline/porous silicon nanocomposites could be well dispersed in aqueous solution without any extra hydrophilic surface coatings, and showed a robust photothermal effect under near-infrared (NIR) laser irradiation. Especially, after an intravenous injection into mice, these biodegradable porous silicon-based nanocomposites as non-toxic agents could be completely cleared in body. Moreover, these polyaniline/porous silicon nanocomposites as drug carriers also exhibited an efficient loading and dual pH/NIR light-triggered release of doxorubicin hydrochloride (DOX, a model anticancer drug). Most importantly, assisted with NIR laser irradiation, polyaniline/PSiNPs nanocomposites with loading DOX showed a remarkable synergistic anticancer effect combining chemotherapy with photothermal therapy, whether in vitro or in vivo. Therefore, based on biodegradable PSiNPs-based nanocomposites, this combination approach of chemo-photothermal therapy would have enormous potential on clinical cancer treatments in the future. STATEMENT OF SIGNIFICANCE Considering the non-biodegradable nature and potential long-term toxicity concerns of photothermal nanoagents, it is of great interest and importance to develop biodegradable and photothermal nanoparticles with an excellent biocompatibility for their future clinical applications. In our experiments, we fabricated porous silicon-based hybrid nanocomposites via surface initiated polymerization of aniline, which showed an excellent photothermal effect, aqueous dispersibility, biodegradability and biocompatibility. Furthermore, after an efficient loading of DOX molecules, polyaniline/porous silicon nanocomposites exhibited the remarkable synergistic anticancer effect, whether in vitro and in vivo.
Collapse
|
19
|
Shi Y, Liu M, Deng F, Zeng G, Wan Q, Zhang X, Wei Y. Recent progress and development on polymeric nanomaterials for photothermal therapy: a brief overview. J Mater Chem B 2017; 5:194-206. [DOI: 10.1039/c6tb02249a] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review article summarizes the recent development and progress of polymeric photothermal agents for photothermal therapy and imaging-guided photothermal therapy applications.
Collapse
Affiliation(s)
- Yingge Shi
- Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Meiying Liu
- Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Fengjie Deng
- Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Guangjian Zeng
- Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Qing Wan
- Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Xiaoyong Zhang
- Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- P. R. China
| |
Collapse
|
20
|
Ćirić-Marjanović G, Milojević-Rakić M, Janošević-Ležaić A, Luginbühl S, Walde P. Enzymatic oligomerization and polymerization of arylamines: state of the art and perspectives. CHEMICKE ZVESTI 2016; 71:199-242. [PMID: 28775395 PMCID: PMC5495875 DOI: 10.1007/s11696-016-0094-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/16/2016] [Indexed: 11/28/2022]
Abstract
The literature concerning the oxidative oligomerization and polymerization of various arylamines, e.g., aniline, substituted anilines, aminonaphthalene and its derivatives, catalyzed by oxidoreductases, such as laccases and peroxidases, in aqueous, organic, and mixed aqueous organic monophasic or biphasic media, is reviewed. An overview of template-free as well as template-assisted enzymatic syntheses of oligomers and polymers of arylamines is given. Special attention is paid to mechanistic aspects of these biocatalytic processes. Because of the nontoxicity of oxidoreductases and their high catalytic efficiency, as well as high selectivity of enzymatic oligomerizations/polymerizations under mild conditions-using mainly water as a solvent and often resulting in minimal byproduct formation-enzymatic oligomerizations and polymerizations of arylamines are environmentally friendly and significantly contribute to a "green" chemistry of conducting and redox-active oligomers and polymers. Current and potential future applications of enzymatic polymerization processes and enzymatically synthesized oligo/polyarylamines are discussed.
Collapse
Affiliation(s)
- Gordana Ćirić-Marjanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Maja Milojević-Rakić
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Aleksandra Janošević-Ležaić
- Department of Physical Chemistry and Instrumental Methods, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Sandra Luginbühl
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| |
Collapse
|
21
|
Zhang J, Liu S, Hu X, Xie Z, Jing X. Cyanine-Curcumin Assembling Nanoparticles for Near-Infrared Imaging and Photothermal Therapy. ACS Biomater Sci Eng 2016; 2:1942-1950. [DOI: 10.1021/acsbiomaterials.6b00315] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jianxu Zhang
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin
Street, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, P. R. China
| | - Shi Liu
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin
Street, Changchun, Jilin 130022, P. R. China
| | - Xiuli Hu
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin
Street, Changchun, Jilin 130022, P. R. China
| | - Zhigang Xie
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin
Street, Changchun, Jilin 130022, P. R. China
| | - Xiabin Jing
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin
Street, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
22
|
Li X, Liu X, Qiao X, Xing S. Confining the polymerization of aniline to generate yolk–shell polyaniline@SiO2 nanostructures. RSC Adv 2015. [DOI: 10.1039/c5ra15065e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Yolk–shell nanostructured polyaniline@SiO2 particles were fabricated by using CeO2@SiO2 particles as reactive and confined templates and the samples were applied in drug loading and photothermal release as a proof of concept.
Collapse
Affiliation(s)
- Xiaoting Li
- Jilin Provincial Key Laboratory of Micro-Nano Functional Materials
- Northeast Normal University
- Changchun
- P. R. China 130024
| | - Xianchun Liu
- Jilin Provincial Key Laboratory of Micro-Nano Functional Materials
- Northeast Normal University
- Changchun
- P. R. China 130024
| | - Xiaoguang Qiao
- Jilin Provincial Key Laboratory of Micro-Nano Functional Materials
- Northeast Normal University
- Changchun
- P. R. China 130024
| | - Shuangxi Xing
- Jilin Provincial Key Laboratory of Micro-Nano Functional Materials
- Northeast Normal University
- Changchun
- P. R. China 130024
| |
Collapse
|