1
|
Ye C, Gao F, Wei H, Chen J, Yang G, Yuan Q, Zhang W. Pd(II)-Catalyzed Enantioselective Ring-Contraction for the Construction of 1,4-Benzoxazines. J Org Chem 2021; 86:16573-16581. [PMID: 34726916 DOI: 10.1021/acs.joc.1c01874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enantioselective ring-contraction reactions have not been widely reported. We have developed an enantioselective ring contraction of 5,6-dihydro-2H-benzo[b][1,4]oxazocines, affording enantiomerically enriched 3,4-dihydro-2H-1,4-benzoxazine derivatives as single regioisomers. An acidic additive is necessary in order to obtain the products with good yields and enantiomeric ratios (up to 93% yield, 98:2 er). The reaction was successfully performed on a gram scale, and the products can be derivatized easily.
Collapse
Affiliation(s)
- Chenghao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Feng Gao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Haipeng Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Guoqiang Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qianjia Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,College of Chemistry, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, P. R. China
| |
Collapse
|
2
|
Lewis acid-catalysed nucleophilic opening of a bicyclic hemiaminal followed by ring contraction: Access to functionalized L-idonojirimycin derivatives. Carbohydr Res 2019; 472:65-71. [PMID: 30496874 DOI: 10.1016/j.carres.2018.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022]
Abstract
The Lewis acid-catalyzed nucleophilic opening of a D-gluco-configured bicyclic hemiaminal has been examined. Several Lewis acids and silylated nucleophiles have been screened allowing the introduction of acetophenone, phosphonate or nitrile at the pseudoanomeric position in satisfactory yields and high 1,2 trans stereoselectivities. Their skeletal rearrangement triggered by the N-benzyl anchimeric assistance provided the corresponding L-ido-configured piperidines displaying various functional groups at C-6 position in good yield.
Collapse
|
3
|
Fontelle N, Yamamoto A, Arda A, Jiménez-Barbero J, Kato A, Désiré J, Blériot Y. 2-Acetamido-2-deoxy-l-iminosugarC-Alkyl andC-Aryl Glycosides: Synthesis and Glycosidase Inhibition. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Nathalie Fontelle
- IC2MP-UMR CNRS 7285; Université de Poitiers; Equipe “Synthèse Organique”; Université de Poitiers; 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Arisa Yamamoto
- Department of Hospital Pharmacy; University of Toyama; 2630 Sugitani 930-0194 Toyama Japan
| | - Ana Arda
- Parque Tecnológico de Bizkaia; CIC bioGUNE; Edif. 801A-1° 48160 Derio-Bizkaia Spain
| | | | - Atsushi Kato
- Department of Hospital Pharmacy; University of Toyama; 2630 Sugitani 930-0194 Toyama Japan
| | - Jérôme Désiré
- IC2MP-UMR CNRS 7285; Université de Poitiers; Equipe “Synthèse Organique”; Université de Poitiers; 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Yves Blériot
- IC2MP-UMR CNRS 7285; Université de Poitiers; Equipe “Synthèse Organique”; Université de Poitiers; 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| |
Collapse
|
4
|
Highly efficient [3+3] cycloaddition reactions of in situ generated aza-oxyallyl cation with nitrones. HETEROCYCL COMMUN 2018. [DOI: 10.1515/hc-2018-0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractAn efficient protocol was developed for the synthesis of 1,2,4-oxadiazinan-5-one derivatives via [3+3] cycloaddition ofin situgenerated aza-oxyallyl cations with nitrones. This method provides high yields of the heterocyclic products, excellent regioselectivity and broad substrate scope.
Collapse
|
5
|
Dhanju S, Blazejewski BW, Crich D. Synthesis of Trialkylhydroxylamines by Stepwise Reduction of O-Acyl N,N-Disubstituted Hydroxylamines: Substituent Effects on the Reduction of O-(1-Acyloxyalkyl)hydroxylamines and on the Conformational Dynamics of N-Alkoxypiperidines. J Org Chem 2017; 82:5345-5353. [DOI: 10.1021/acs.joc.7b00717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandeep Dhanju
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | - David Crich
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
6
|
Dhanju S, Crich D. Synthesis of N,N,O-Trisubstituted Hydroxylamines by Stepwise Reduction and Substitution of O-Acyl N,N-Disubstituted Hydroxylamines. Org Lett 2016; 18:1820-3. [DOI: 10.1021/acs.orglett.6b00556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandeep Dhanju
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - David Crich
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
7
|
Abstract
The synthesis and chemical and physicochemical properties as well as biological and medical applications of various hydroxylamine-functionalized carbohydrate derivatives are summarized.
Collapse
Affiliation(s)
- N. Chen
- PPSM
- ENS Cachan
- CNRS
- Alembert Institute
- Université Paris-Saclay
| | - J. Xie
- PPSM
- ENS Cachan
- CNRS
- Alembert Institute
- Université Paris-Saclay
| |
Collapse
|