1
|
Steinegger A, Wolfbeis OS, Borisov SM. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem Rev 2020; 120:12357-12489. [PMID: 33147405 PMCID: PMC7705895 DOI: 10.1021/acs.chemrev.0c00451] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/13/2022]
Abstract
This is the first comprehensive review on methods and materials for use in optical sensing of pH values and on applications of such sensors. The Review starts with an introduction that contains subsections on the definition of the pH value, a brief look back on optical methods for sensing of pH, on the effects of ionic strength on pH values and pKa values, on the selectivity, sensitivity, precision, dynamic ranges, and temperature dependence of such sensors. Commonly used optical sensing schemes are covered in a next main chapter, with subsections on methods based on absorptiometry, reflectometry, luminescence, refractive index, surface plasmon resonance, photonic crystals, turbidity, mechanical displacement, interferometry, and solvatochromism. This is followed by sections on absorptiometric and luminescent molecular probes for use pH in sensors. Further large sections cover polymeric hosts and supports, and methods for immobilization of indicator dyes. Further and more specific sections summarize the state of the art in materials with dual functionality (indicator and host), nanomaterials, sensors based on upconversion and 2-photon absorption, multiparameter sensors, imaging, and sensors for extreme pH values. A chapter on the many sensing formats has subsections on planar, fiber optic, evanescent wave, refractive index, surface plasmon resonance and holography based sensor designs, and on distributed sensing. Another section summarizes selected applications in areas, such as medicine, biology, oceanography, bioprocess monitoring, corrosion studies, on the use of pH sensors as transducers in biosensors and chemical sensors, and their integration into flow-injection analyzers, microfluidic devices, and lab-on-a-chip systems. An extra section is devoted to current challenges, with subsections on challenges of general nature and those of specific nature. A concluding section gives an outlook on potential future trends and perspectives.
Collapse
Affiliation(s)
- Andreas Steinegger
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
2
|
Watanabe K, Sakata A, Saijo Y, Baba T. pH-sensitive GaInAsP photonic crystal fractal band-edge laser. OPTICS LETTERS 2020; 45:6202-6205. [PMID: 33186950 DOI: 10.1364/ol.410122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The light emission characteristics of GaInAsP semiconductors in aqueous solutions are modified by the surface charge, depending on the balance between radiative and nonradiative recombination. This Letter demonstrates the application of a GaInAsP photonic crystal band-edge laser in sensing a solution pH, which reflects the surface charge. The sensitivity is enhanced by a hybrid of fractal honeycomb and close-packed structures with a large surface-to-volume ratio and a high quality factor (Q), which allows a low threshold carrier density. We experimentally obtained a maximum pH sensitivity of 1.9 dB/pH near the threshold and a signal-to-noise ratio of 52/pH (pH resolution of 0.019) at a pump power 2.4 times the threshold where the intensity noise diminished.
Collapse
|
3
|
Liyanage T, Sangha A, Sardar R. Achieving biosensing at attomolar concentrations of cardiac troponin T in human biofluids by developing a label-free nanoplasmonic analytical assay. Analyst 2017; 142:2442-2450. [DOI: 10.1039/c7an00430c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A nanoplasmonic-based highly reproducible and ultrasensitive analytical sensor was fabricated to quantify cardiac troponin T at attomolar concentration with high selectivity.
Collapse
Affiliation(s)
- Thakshila Liyanage
- Department of Chemistry and Chemical Biology
- Indiana University-Purdue University Indianapolis
- Indianapolis
- USA
| | - Andeep Sangha
- Department of Chemistry and Chemical Biology
- Indiana University-Purdue University Indianapolis
- Indianapolis
- USA
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology
- Indiana University-Purdue University Indianapolis
- Indianapolis
- USA
- Integrated Nanosystems Development Institute
| |
Collapse
|
4
|
Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016; 45:1457-501. [PMID: 26776487 PMCID: PMC4775468 DOI: 10.1039/c5cs00798d] [Citation(s) in RCA: 882] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive "smart" MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Parham Sahandi Zangabad
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Reza Rahighi
- Department of Research and Development, Sharif Ultrahigh Nanotechnologists (SUN) Company, P.O. Box: 13488-96394, Tehran, Iran and Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran, Iran
| | - S Masoud Moosavi Basri
- Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran and Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - H Mirshekari
- Department of Biotechnology, University of Kerala, Trivandrum, India
| | - M Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Z Shafaei Pishabad
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - A Aslani
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - M Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - D Ghosh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - A Beyzavi
- School of Mechanical Engineering, Boston University, Boston, MA, USA
| | - A Vaseghi
- Department of Biotechnology, Faculty of Advanced Science and Technologies of Isfahan, Isfahan, Iran
| | - A R Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - L Haghani
- School of Medicine, International Campus of Tehran University of Medical Science, Tehran, Iran
| | - S Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Wang Q, Liu L, Wang Y, Liu P, Jiang H, Xu Z, Ma Z, Oren S, Chow EKC, Lu M, Dong L. Tunable Optical Nanoantennas Incorporating Bowtie Nanoantenna Arrays with Stimuli-Responsive Polymer. Sci Rep 2015; 5:18567. [PMID: 26681478 PMCID: PMC4683518 DOI: 10.1038/srep18567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/20/2015] [Indexed: 02/06/2023] Open
Abstract
We report on a temperature-responsive tunable plasmonic device that incorporates coupled bowtie nanoantenna arrays (BNAs) with a submicron-thick, thermosensitive hydrogel coating. The coupled plasmonic nanoparticles provide an intrinsically higher field enhancement than conventional individual nanoparticles. The favorable scaling of plasmonic dimers at the nanometer scale and ionic diffusion at the submicron scale is leveraged to achieve strong optical resonance and rapid hydrogel response, respectively. We demonstrate that the hydrogel-coated BNAs are able to sense environmental temperature variations. The phase transition of hydrogel leads to 16.2 nm of resonant wavelength shift for the hydrogel-coated BNAs, whereas only 3 nm for the uncoated counterpart. The response time of the device to temperature variations is only 250 ms, due to the small hydrogel thickness at the submicron scale. The demonstration of the ability of the device to tune its optical resonance in response to an environmental stimulus (here, temperature) suggests a possibility of making many other tunable plasmonic devices through the incorporation of coupled plasmonic nanostructures and various environmental-responsive hydrogels.
Collapse
Affiliation(s)
- Qiugu Wang
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Longju Liu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Yifei Wang
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Peng Liu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Huawei Jiang
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Zhen Xu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Zhuo Ma
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Seval Oren
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Edmond K. C. Chow
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Meng Lu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Liang Dong
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
6
|
Uppalapati S, Kong N, Norberg O, Ramström O, Yan M. Ionization of covalent immobilized poly(4-vinylphenol) monolayers measured by ellipsometry, QCM and SPR. APPLIED SURFACE SCIENCE 2015; 343:166-171. [PMID: 26097271 PMCID: PMC4469237 DOI: 10.1016/j.apsusc.2015.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Covalently immobilized poly(4-vinylphenol) (PVP) monolayer films were fabricated by spin coating PVP on perfluorophenyl azide (PFPA)-functionalized surface followed by UV irradiation. The pH-responsive behavior of these PVP ultrathin films was evaluated by ellipsometry, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). By monitoring the responses of these films to pH in situ, the ionization constant of the monolayer thin films was obtained. The apparent pKa value of these covalently immobilized PVP monolayers, 13.4 by SPR, was 3 units higher than that of the free polymer in aqueous solution.
Collapse
Affiliation(s)
- Suji Uppalapati
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, United States
| | - Na Kong
- KTH-Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Oscar Norberg
- KTH-Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Olof Ramström
- KTH-Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, United States
- KTH-Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044 Stockholm, Sweden
| |
Collapse
|
7
|
Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. SENSORS 2015; 15:15684-716. [PMID: 26147727 PMCID: PMC4541850 DOI: 10.3390/s150715684] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/13/2015] [Accepted: 06/23/2015] [Indexed: 12/16/2022]
Abstract
Localized surface plasmon resonance (LSPR) has emerged as a leader among label-free biosensing techniques in that it offers sensitive, robust, and facile detection. Traditional LSPR-based biosensing utilizes the sensitivity of the plasmon frequency to changes in local index of refraction at the nanoparticle surface. Although surface plasmon resonance technologies are now widely used to measure biomolecular interactions, several challenges remain. In this article, we have categorized these challenges into four categories: improving sensitivity and limit of detection, selectivity in complex biological solutions, sensitive detection of membrane-associated species, and the adaptation of sensing elements for point-of-care diagnostic devices. The first section of this article will involve a conceptual discussion of surface plasmon resonance and the factors affecting changes in optical signal detected. The following sections will discuss applications of LSPR biosensing with an emphasis on recent advances and approaches to overcome the four limitations mentioned above. First, improvements in limit of detection through various amplification strategies will be highlighted. The second section will involve advances to improve selectivity in complex media through self-assembled monolayers, “plasmon ruler” devices involving plasmonic coupling, and shape complementarity on the nanoparticle surface. The following section will describe various LSPR platforms designed for the sensitive detection of membrane-associated species. Finally, recent advances towards multiplexed and microfluidic LSPR-based devices for inexpensive, rapid, point-of-care diagnostics will be discussed.
Collapse
|