1
|
Papageorgiou M, Kitsou I, Gkomoza P, Alivisatou AA, Papaparaskevas J, Tsetsekou A. Bioinspired synthesis of multifunctional, highly stable polymeric templated silver-silica colloids as catalytic and antibacterial coatings for paper. Colloids Surf B Biointerfaces 2024; 240:113997. [PMID: 38815309 DOI: 10.1016/j.colsurfb.2024.113997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
In this paper, a simple, bottom up, bioinspired technique is proposed for the synthesis of highly stable colloids of silica supported spherical silver nanoparticles (SiO2@Ag) that act as efficient catalytic and antimicrobial coatings for an organic substrate, filter paper. The core - shell structure and the highly branched dendritic polymer, poly(ethylene)imine, enabled the precise control of growth rate and morphology of silica and silver nanoparticles. The polymer also enabled the deposition of these nanoparticles onto an organic substrate, filter paper, through immersion by modifying its surface. The catalytic and antibacterial properties of these samples were assessed. The results obtained from this analysis showed a complete degradation of an aqueous pollutant, 4-nitrophenol, for 6 successive catalytic cycles without intermediate purification steps. Furthermore, the polymeric silica-silver suspension proved to express antibacterial activity against both Gram-positive and Gram-negative bacteria (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa). The antibacterial properties were evaluated according to the disk diffusion method, whereas the Minimum Inhibitory Concentration was also determined. The samples were examined by Scanning Electron Microscopy, Transmission Electron Microscopy, X-ray diffraction analysis, z-potential analysis, Fourier Transform Infrared Spectroscopy and Ultraviolet-visible Spectroscopy.
Collapse
Affiliation(s)
- Michaela Papageorgiou
- School of Mining & Metallurgical Engineering, National Technical University of Athens, Athens 106 82, Greece
| | - Ioanna Kitsou
- School of Mining & Metallurgical Engineering, National Technical University of Athens, Athens 106 82, Greece
| | - Paraskevi Gkomoza
- School of Mining & Metallurgical Engineering, National Technical University of Athens, Athens 106 82, Greece
| | | | - Joseph Papaparaskevas
- Microbiology Department, School of Medicine, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | - Athena Tsetsekou
- School of Mining & Metallurgical Engineering, National Technical University of Athens, Athens 106 82, Greece.
| |
Collapse
|
2
|
Ahn HM, Park JO, Lee HJ, Lee C, Chun H, Kim KB. SERS detection of surface-adsorbent toxic substances of microplastics based on gold nanoparticles and surface acoustic waves. RSC Adv 2024; 14:2061-2069. [PMID: 38196907 PMCID: PMC10774860 DOI: 10.1039/d3ra07382c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Microplastics adsorb toxic substances and act as a transport medium. When microplastics adsorbed with toxic substances accumulate in the body, the microplastics and the adsorbed toxic substances can cause serious diseases, such as cancer. This work aimed to develop a surface-enhanced Raman spectroscopy (SERS) detection method for surface-adsorbent toxic substances by forming gold nanogaps on microplastics using surface acoustic waves (SAWs). Polystyrene microparticles (PSMPs; 1 μm) and polycyclic aromatic hydrocarbons (PAHs), including pyrene, anthracene, and fluorene, were selected as microplastics and toxic substances, respectively. Gold nanoparticles (AuNPs; 50 nm) were used as a SERS agent. The Raman characteristic peaks of the PAHs adsorbed on the surface of PSMPs were detected, and the SERS intensity and logarithm of the concentrations of pyrene, anthracene, and fluorene showed a linear relationship (R2 = 0.98), and the limits of detection were 95, 168, and 195 nM, respectively. Each PAH was detected on the surface of PSMPs, which were adsorbed with toxic substances in a mixture of three PAHs, indicating that the technique can be used to elucidate mixtures of toxic substances. The proposed SERS detection method based on SAWs could sense toxic substances that were surface-adsorbed on microplastics and can be utilized to monitor or track pollutants in aquatic environments.
Collapse
Affiliation(s)
- Hyeong Min Ahn
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH) 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu Cheonan 31056 Republic of Korea
- Department of Biomedical Engineering, Korea University 145, Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Jin Oh Park
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH) 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu Cheonan 31056 Republic of Korea
- Department of Biomedical Engineering, Korea University 145, Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Hak-Jun Lee
- Smart Manufacturing System R&D Department, Korea Institute of Industrial Technology (KITECH) 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu Cheonan 31056 Republic of Korea
| | - Cheonkyu Lee
- Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology (KITECH) 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu Cheonan 31056 Republic of Korea
| | - Honggu Chun
- Department of Biomedical Engineering, Korea University 145, Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Kwang Bok Kim
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH) 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu Cheonan 31056 Republic of Korea
| |
Collapse
|
3
|
Bekissanova Z, Railean V, Wojtczak I, Brzozowska W, Trykowski G, Ospanova A, Sprynskyy M. Synthesis and Antimicrobial Activity of 3D Micro-Nanostructured Diatom Biosilica Coated by Epitaxially Growing Ag-AgCl Hybrid Nanoparticles. Biomimetics (Basel) 2023; 9:5. [PMID: 38248579 PMCID: PMC10813397 DOI: 10.3390/biomimetics9010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
The 3D (three-dimensional) micro-nanostructured diatom biosilica obtained from cultivated diatoms was used as a support to immobilize epitaxially growing AgCl-Ag hybrid nanoparticles ((Ag-AgCl)NPs) for the synthesis of nanocomposites with antimicrobial properties. The prepared composites that contained epitaxially grown (Ag-AgCl)NPs were investigated in terms of their morphological and structural characteristics, elemental and mineral composition, crystalline forms, zeta potential, and photoluminescence properties using a variety of instrumental methods including SEM (scanning electron microscopy), TEM (transmission electron microscopy), EDX (energy-dispersive X-ray spectroscopy), XRD (X-ray powder diffraction), zeta-potential measurement, and photoluminescence spectroscopy. The content of (AgCl-Ag)NPs in the hybrid composites amounted to 4.6 mg/g and 8.4 mg/g with AgClNPs/AgNPs ratios as a percentage of 86/14 and 51/49, respectively. Hybrid nanoparticles were evenly dispersed with a dominant size of 5 to 25 nm in composite with an amount of 8.4 mg/g of silver. The average size of the nanoparticles was 7.5 nm; also, there were nanoparticles with a size of 1-2 nm and particles that were 20-40 nm. The synthesis of (Ag-AgCl)NPs and their potential mechanism were studied. The MIC (the minimum inhibitory concentration method) approach was used to investigate the antimicrobial activity against microorganisms Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus. The nanocomposites containing (Ag-AgCl)NPs and natural diatom biosilica showed resistance to bacterial strains from the American Type Cultures Collection and clinical isolates (diabetic foot infection and wound isolates).
Collapse
Affiliation(s)
- Zhanar Bekissanova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (Z.B.); (A.O.)
- Center of Physical-Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland
| | - Izabela Wojtczak
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland;
| | - Weronika Brzozowska
- Division of Surface Science, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland;
| | - Grzegorz Trykowski
- Department of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| | - Alyiya Ospanova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (Z.B.); (A.O.)
- Center of Physical-Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Myroslav Sprynskyy
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland;
| |
Collapse
|
4
|
Jundale RB, Bari AH, Kulkarni AA. Insights into the Synthesis and Kinetics of Silver-on-Silica Core-Shell Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37399513 DOI: 10.1021/acs.langmuir.3c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
In this study, a heterogeneous nucleation and growth model has been developed to explore the formation mechanism of silver-deposited silica core-shell particles based on the reaction kinetics. To validate the core-shell model, the time-dependent experimental data were quantitatively examined and in situ reduction, nucleation, and growth rates were estimated by optimizing the concentration profiles of reactants and deposited silver particles. Using this model, we also attempted to predict the change in the surface area and diameter of core-shell particles. The concentration of the reducing agent, metal precursor, and reaction temperature were found to have a strong influence on the rate constants and morphology of core-shell particles. Higher rates of nucleation and growth often produced thick, asymmetric patches that covered the entire surface, whereas lower rates produced sparsely deposited silver particles with a spherical shape. The result revealed that by simply tuning the process parameters and controlling the relative rates, the morphology of deposited silver particles and the surface coverage can be controlled while retaining the spherical shape of the core. The present study aims to offer comprehensive data pertaining to the nucleation, growth, and coalescence processes of core-shell nanostructures which will aid in the development and understanding of the principles that govern the formation of nanoparticle-coated materials.
Collapse
Affiliation(s)
- Rajashri B Jundale
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Atul H Bari
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Amol A Kulkarni
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Han J, Shan X, Lin Y, Tao Y, Zhao X, Wang Z, Xu H, Liu Y. Multi-Wavelength-Recognizable Memristive Devices via Surface Plasmon Resonance Effect for Color Visual System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207928. [PMID: 36890789 DOI: 10.1002/smll.202207928] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/04/2023] [Indexed: 06/08/2023]
Abstract
Photoelectric memristor has attracted many attentions thanks to their promising potential in optical communication chips and artificial vision systems. However, the implementation of an artificial visual system based on memristive devices remains a considerable challenge because most photoelectric memristors cannot recognize color. Herein, multi-wavelength recognizable memristive devices based on silver(Ag) nanoparticles (NPs) and porous silicon oxide (SiOx ) nanocomposites are presented. Rely on the effects of localized surface plasmon resonance (LSPR) and optical excitation of Ag NPs in SiOx , the set voltage of the device can be gradually reduced. Moreover, the current overshoot problem is alleviated to suppress conducting filament overgrowth after visible light irradiation with different wavelengths, resulting in diverse low resistance states (LRS). Taking advantage of the characteristics of controlled switching voltage and LRS resistance distribution, color image recognition is finally realized in the present work. X-ray photoelectron spectroscopy (XPS) and conductive atomic force microscopy (C-AFM) show that the light irradiation plays an important role on resistive switching (RS) process: the photo-assisted Ag ionization leads to a significant reduction of set voltage and overshoot current. This work provides an effective method toward the development of multi-wavelength-recognizable memristive devices for future artificial color vision system.
Collapse
Affiliation(s)
- Jiaqi Han
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, 5268 Renmin Street, Changchun, 130024, China
| | - Xuanyu Shan
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, 5268 Renmin Street, Changchun, 130024, China
| | - Ya Lin
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, 5268 Renmin Street, Changchun, 130024, China
| | - Ye Tao
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, 5268 Renmin Street, Changchun, 130024, China
| | - Xiaoning Zhao
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, 5268 Renmin Street, Changchun, 130024, China
| | - Zhongqiang Wang
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, 5268 Renmin Street, Changchun, 130024, China
| | - Haiyang Xu
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, 5268 Renmin Street, Changchun, 130024, China
| | - Yichun Liu
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, 5268 Renmin Street, Changchun, 130024, China
| |
Collapse
|
6
|
Wang D, Zhu J, Hui B, Gong Z, Fan M. Halogen ions modified Ag NPs for ultrasensitive SERS detection of Polycyclic aromatic hydrocarbons. LUMINESCENCE 2022; 37:1541-1546. [PMID: 35816184 DOI: 10.1002/bio.4329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/06/2022]
Abstract
Rapid ultrasensitive detection of trace polycyclic aromatic hydrocarbons (PAHs) is essential and significant for pollution control due to their hazard, persistence, and the wide distribution in the environment. Therefore, rapid detection of PAHs is critical for controlling pollution and protecting the ecology. Considering the advantages of Surface-enhanced Raman spectroscopy (SERS), a simple and reliable SERS method was proposed for detecting PAHs in water in this work. Three chemicals, namely NaCl, KBr, and KI, were chosen to modify Ag NPs for phenanthrene (Phe) detection, and Ag NPs modified with KBr (Ag-BrNPs) show the best SERS response. The mixing sequence and the concentration of KBr were optimized. The addition order of mixing KBr and Ag NPs before Phe solution is best, and the optimal concentration of KBr was 20 mM. Under the optimal condition, the limit of quantification for Phe, pyrene (Pyr), and anthracene (Ant) were 10-6 M, 10-7 M, and 10-7 M, respectively. Mixed PAHs (Phe, Pyr, and Ant) in spiked water samples have been identified and quantified successfully. The proposed method has good application prospects in environmental pollution monitoring.
Collapse
Affiliation(s)
- Dongmei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jingyi Zhu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Binyu Hui
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Arkas M, Douloudi M, Nikoli E, Karountzou G, Kitsou I, Kavetsou E, Korres D, Vouyiouka S, Tsetsekou A, Giannakopoulos K, Papageorgiou M. Investigation of two bioinspired reaction mechanisms for the optimization of nano catalysts generated from hyperbranched polymer matrices. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Otari SV, Kalia VC, Bisht A, Kim IW, Lee JK. Green Synthesis of Silver-Decorated Magnetic Particles for Efficient and Reusable Antimicrobial Activity. MATERIALS 2021; 14:ma14247893. [PMID: 34947488 PMCID: PMC8709440 DOI: 10.3390/ma14247893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022]
Abstract
Metal and metal hybrid nanostructures have shown tremendous application in the biomedical and catalytic fields because of their plasmonic and catalytic properties. Here, a green and clean method was employed for the synthesis of silver nanoparticle (Ag NP)-SiO2-Fe2O3 hybrid microstructures, and biomolecules from green tea extracts were used for constructing the hybrid structures. The SiO2-Fe2O3 structures were synthesized using an ethanolic green tea leaf extract to form Bio-SiO2-Fe2O3 (BSiO2-Fe2O3) structures. Biochemical studies demonstrated the presence of green tea biomolecules in the BSiO2 layer. Reduction of the silver ions was performed by a BSiO2 layer to form Ag NPs of 5–10 nm in diameter in and on the BSiO2-Fe2O3 microstructure. The reduction process was observed within 600 s, which is faster than that reported elsewhere. The antimicrobial activity of the Ag-BSiO2-Fe2O3 hybrid structure was demonstrated against Staphylococcus aureus and Escherichia coli, and the nanostructures were further visualized using confocal laser scanning microscopy (CLSM). The magnetic properties of the Ag-BSiO2-Fe2O3 hybrid structure were used for studying reusable antimicrobial activity. Thus, in this study, we provide a novel green route for the construction of a biomolecule-entrapped SiO2-Fe2O3 structure and their use for the ultra-fast formation of Ag NPs to form antimicrobial active multifunctional hybrid structures.
Collapse
Affiliation(s)
- Sachin V. Otari
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea; (S.V.O.); (V.C.K.); (A.B.); (I.-W.K.)
| | - Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea; (S.V.O.); (V.C.K.); (A.B.); (I.-W.K.)
| | - Aarti Bisht
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea; (S.V.O.); (V.C.K.); (A.B.); (I.-W.K.)
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea; (S.V.O.); (V.C.K.); (A.B.); (I.-W.K.)
- Institute of SK-KU Biomaterials, Konkuk University, Seoul 05029, Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea; (S.V.O.); (V.C.K.); (A.B.); (I.-W.K.)
- Correspondence: ; Tel.: +82-2-450-3505
| |
Collapse
|
9
|
Effect of Graphene Characteristics on Morphology and Performance of Composite Noble Metal-Reduced Graphene Oxide SERS Substrate. Molecules 2021; 26:molecules26164775. [PMID: 34443368 PMCID: PMC8401241 DOI: 10.3390/molecules26164775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
Graphene/noble metal substrates for surface enhanced RAMAN scattering (SERS) possess synergistically improved performance, due to the strong chemical enhancement mechanism accounted to graphene and the electromagnetic mechanism raised from the metal nanoparticles. However, only the effect of noble metal nanoparticles characteristics on the SERS performance was studied so far. In attempts to bring a light to the effect of quality of graphene, in this work, two different graphene oxides were selected, slightly oxidized GOS (20%) with low aspect ratio (1000) and highly oxidized (50%) GOG with high aspect ratio (14,000). GO and precursors for noble metal nanoparticles (NP) simultaneous were reduced, resulting in rGO decorated with AgNPs and AuNPs. The graphene characteristics affected the size, shape, and packing of nanoparticles. The oxygen functionalities actuated as nucleation sites for AgNPs, thus GOG was decorated with higher number and smaller size AgNPs than GOS. Oppositely, AuNPs preferred bare graphene surface, thus GOS was covered with smaller size, densely packed nanoparticles, resulting in the best SERS performance. Fluorescein in concentration of 10-7 M was detected with enhancement factor of 82 × 104. This work demonstrates that selection of graphene is additional tool toward powerful SERS substrates.
Collapse
|
10
|
Critical analysis of various supporting mediums employed for the incapacitation of silver nanomaterial for aniline and phenolic pollutants: A review. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-017-0192-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Petousis M, Tzounis L, Papageorgiou D, Vidakis N. Decoration of SiO 2 and Fe 3O 4 Nanoparticles onto the Surface of MWCNT-Grafted Glass Fibers: A Simple Approach for the Creation of Binary Nanoparticle Hierarchical and Multifunctional Composite Interphases. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2500. [PMID: 33322133 PMCID: PMC7764478 DOI: 10.3390/nano10122500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 02/01/2023]
Abstract
We report on a versatile method for chemically grafting multiwalled carbon nanotubes (MWCNTs) onto the surface of conventional glass fibers (GFs), as well as depositing further silica (SiO2) or superparamagnetic (SPM) magnetite (Fe3O4) nanoparticles (NPs) creating novel hierarchical reinforcements. The CNT-grafted GFs (GF-CNT) were utilized further as the support to decorate nano-sized SiO2 or Fe3O4 via electrostatic interactions, resulting finally into double hierarchy reinforcements. SiO2 NPs were first used as model nano-particulate objects to investigate the interfacial adhesion properties of binary coated GFs (denoted as GF-CNT/SiO2) in epoxy matrix via single fiber pull-out (SFPO) tests. The results indicated that the apparent interfacial shear strength (IFSS or τapp) was significantly increased compared to the GF-CNT. Fe3O4 NPs were assembled also onto CNT-grafted GFs resulting into GF-CNT/Fe3O4. The fibers exhibited a magnetic response upon being exposed to an external magnet. Scanning electron microscopy (SEM) revealed the surface morphologies of the different hierarchical fibers fabricated in this work. The interphase microstructure of GF-CNT and GF-CNT/SiO2 embedded in epoxy was investigated by transmission electron microscopy (TEM). The hybrid and hierarchical GFs are promising multifunctional reinforcements with appr. 85% increase of the IFSS as compared to typical amino-silane modified GFs. It could be envisaged that, among other purposes, GF-CNT/Fe3O4 could be potentially recyclable reinforcements, especially when embedded in thermoplastic polymer matrices.
Collapse
Affiliation(s)
- Markos Petousis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71004 Heraklion, Crete, Greece;
| | - Lazaros Tzounis
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Papageorgiou
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK;
| | - Nectarios Vidakis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71004 Heraklion, Crete, Greece;
| |
Collapse
|
12
|
Tzounis L, Bangeas PI, Exadaktylos A, Petousis M, Vidakis N. Three-Dimensional Printed Polylactic Acid (PLA) Surgical Retractors with Sonochemically Immobilized Silver Nanoparticles: The Next Generation of Low-Cost Antimicrobial Surgery Equipment. NANOMATERIALS 2020; 10:nano10050985. [PMID: 32455641 PMCID: PMC7279541 DOI: 10.3390/nano10050985] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/09/2020] [Accepted: 05/17/2020] [Indexed: 01/17/2023]
Abstract
A versatile method is reported for the manufacturing of antimicrobial (AM) surgery equipment utilising fused deposition modelling (FDM), three-dimensional (3D) printing and sonochemistry thin-film deposition technology. A surgical retractor was replicated from a commercial polylactic acid (PLA) thermoplastic filament, while a thin layer of silver (Ag) nanoparticles (NPs) was developed via a simple and scalable sonochemical deposition method. The PLA retractor covered with Ag NPs (PLA@Ag) exhibited vigorous AM properties examined by a reduction in Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli) bacteria viability (%) experiments at 30, 60 and 120 min duration of contact (p < 0.05). Scanning electron microscopy (SEM) showed the surface morphology of bare PLA and PLA@Ag retractor, revealing a homogeneous and full surface coverage of Ag NPs. X-Ray diffraction (XRD) analysis indicated the crystallinity of Ag nanocoating. Ultraviolent-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM) highlighted the AgNP plasmonic optical responses and average particle size of 31.08 ± 6.68 nm. TEM images of the PLA@Ag crossection demonstrated the thickness of the deposited Ag nanolayer, as well as an observed tendency of AgNPs to penetrate though the outer surface of PLA. The combination of 3D printing and sonochemistry technology could open new avenues in the manufacturing of low-cost and on-demand antimicrobial surgery equipment.
Collapse
Affiliation(s)
- Lazaros Tzounis
- Composite and Smart Materials Laboratory (CSML), Department of Materials Science & Engineering, University of Ioannina, GR-45110 Ioannina, Greece
- Correspondence: (L.T.); (N.V.); Tel.: +30-26510-09024 (L.T.); +30-2810-379833 (N.V.)
| | - Petros I. Bangeas
- Department of emergency medicine, INSELSPITAL, Universitätsspital Bern, 18, 3010 Bern, Switzerland; (P.I.B.); (A.E.)
| | - Aristomenis Exadaktylos
- Department of emergency medicine, INSELSPITAL, Universitätsspital Bern, 18, 3010 Bern, Switzerland; (P.I.B.); (A.E.)
| | - Markos Petousis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71004 Heraklion, Crete, Greece;
| | - Nectarios Vidakis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71004 Heraklion, Crete, Greece;
- Correspondence: (L.T.); (N.V.); Tel.: +30-26510-09024 (L.T.); +30-2810-379833 (N.V.)
| |
Collapse
|
13
|
Highly Efficient Mesoporous Core-Shell Structured Ag@SiO 2 Nanosphere as an Environmentally Friendly Catalyst for Hydrogenation of Nitrobenzene. NANOMATERIALS 2020; 10:nano10050883. [PMID: 32375276 PMCID: PMC7279246 DOI: 10.3390/nano10050883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
The size-uniformed mesoporous Ag@SiO2 nanospheres’ catalysts were prepared in one-pot step via reducing AgNO3 by different types of aldehyde, which could control the size of Ag@SiO2 NPs and exhibit excellent catalytic activity for the hydrogenation of nitrobenzene. The results showed that the Ag core size, monitored by different aldehydes with different reducing abilities, together with the ideal monodisperse core-shell mesoporous structure, was quite important to affect its superior catalytic performances. Moreover, the stability of Ag fixed in the core during reaction for 6 h under 2.0 MPa, 140 °C made this type of Ag@SiO2 catalyst separable and environmentally friendly compared with those conventional homogeneous catalysts and metal NPs catalysts. The best catalyst with smaller Ag cores was prepared by strong reducing agents such as CH2O. The conversion of nitrobenzene can reach 99.9%, the selectivity was 100% and the catalyst maintained its activity after several cycles, and thus, it is a useful novel candidate for the production of aniline.
Collapse
|
14
|
Capeli RA, Dalmaschio CJ, Teixeira SR, Mastelaro VR, Chiquito AJ, Longo E, Pontes FM. One-step controllable synthesis of three-dimensional WO3 hierarchical architectures with different morphologies decorated with silver nanoparticles: enhancing the photocatalytic activity. RSC Adv 2020. [DOI: 10.1039/c9ra10173j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hierarchical architecture self-assembled three-dimensional WO3 and WO3·Ag with high uniformity have been successfully obtained using peroxopolytungstic acid as precursor and silver in a morphological engineering approach under moderate hydrothermal conditions.
Collapse
Affiliation(s)
- R. A. Capeli
- Department of Chemistry
- Universidade Estadual Paulista – Unesp
- Bauru
- Brazil
| | - C. J. Dalmaschio
- Department of Chemistry
- Universidade Federal do Espírito Santo – UFES
- Vitória
- Brazil
| | - S. R. Teixeira
- Departament of Physics
- Faculdade de Ciências e Tecnologia – FCT
- Universidade Estadual Paulista
- 19060-900 – Presidente Prudente
- Brazil
| | - V. R. Mastelaro
- Physics Institute of São Carlos (IFSC)
- University of São Paulo
- Brazil
| | - A. J. Chiquito
- NanO LaB – Department of Physics
- Universidade Federal de São Carlos
- Brazil
| | - E. Longo
- LIEC – CDMF – Department of Chemistry
- Universidade Federal de São Carlos
- Brazil
| | - F. M. Pontes
- Department of Chemistry
- Universidade Estadual Paulista – Unesp
- Bauru
- Brazil
| |
Collapse
|
15
|
Feng J, Xu Y, Huang W, Kong H, Li Y, Cheng H, Li L. A magnetic SERS immunosensor for highly sensitive and selective detection of human carboxylesterase 1 in human serum samples. Anal Chim Acta 2019; 1097:176-185. [PMID: 31910958 DOI: 10.1016/j.aca.2019.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common and lethal cancer. New serum markers for detecting HCC are urgently needed. Human carboxylesterase 1 (hCE1) is an important member of the serine hydrolase superfamily and is closely related to the occurrence of HCC. It can be used as a good serum marker for early diagnosis of HCC. Here, we developed a surface enhanced Raman scattering (SERS)- based magnetic immunosensor that specifically recognizes and detects trace amounts of hCE1 in human serum via a sandwich structure consisting of a SERS tags, magnetic supporting substrates, and target antigen (hCE1). The SERS tags are 4-mercaptobenzoic acid (4-MBA)-labeled AgNPs, and the SERS supporting substrates are composed of a raspberry-like morphology of Fe3O4@SiO2@AgNPs magnetic nanocomposites surface-functionalized with a hCE1 antibody. The prepared SERS magnetic immunosensor exhibits excellent selectivity and extremely high sensitivity for hCE1 detection. The SERS signal and logarithm of hCE1 concentration presented a wide linear response range of 0.1 ng mL-1 to 1.0 mg mL-1, and the detection limit of hCE1 was 0.1 ng mL-1. The results indicate that the immunosensor can be used for the rapid determination of hCE1 in human serum without a complicated sample pre-treatment. Furthermore, the immunosensor has good reproducibility and stability, and has a promising prospect for the quantitative detection of other tumor markers in early clinical diagnosis.
Collapse
Affiliation(s)
- Jun Feng
- School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, Guangxi, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China
| | - Yajuan Xu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China
| | - Wenyi Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China
| | - Hongxing Kong
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China
| | - Yanqing Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China.
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China.
| |
Collapse
|
16
|
Tzounis L, Doña M, Lopez-Romero JM, Fery A, Contreras-Caceres R. Temperature-Controlled Catalysis by Core-Shell-Satellite AuAg@pNIPAM@Ag Hybrid Microgels: A Highly Efficient Catalytic Thermoresponsive Nanoreactor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29360-29372. [PMID: 31329406 DOI: 10.1021/acsami.9b10773] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A novel wet-chemical protocol is reported for the synthesis of "temperature-programmable" catalytic colloids consisting of bimetallic core@shell AuAg nanoparticles encapsulated into poly(N-isopropylacrylamide) (pNIPAM) microgels with silver satellites (AgSTs) incorporated within the microgel structure. Spherical AuNPs of 50 nm in diameter are initially synthesized and used for growing a pNIPAM microgel shell with temperature stimulus response. A silver shell is subsequently grown on the Au core by diffusing Ag salt through the hydrophilic pNIPAM microgel (AuAg@pNIPAM microgel). The use of allylamine as a co-monomer during pNIPAM polymerization facilitates the coordination of Ag+ with the NH2 nitrogen lone pair of electrons, which are reduced to Ag seeds (∼14 nm) using a strong reducing agent, obtaining thus AuAg@pNIPAM@Ag hybrid microgels. The two systems are tested as catalysts toward the reduction of 4-nitrophenol (4-Nip) to 4-aminophenol (4-Amp) by NaBH4. Both exhibit extremely sensitive temperature-dependent reaction rate constants, with the highest K1 value of the order of 0.6 L/m2 s, which is one of the highest values ever reported. The presence of plasmonic entities is confirmed by UV-vis spectroscopy. Dynamic light scattering proves the temperature responsiveness in all cases. Transmission electron microscopy and energy-dispersive X-ray (EDX) elemental mapping highlight the monodispersity of the synthesized hybrid nanostructured microgels, as well as their size and metallic composition. The amount of gold and silver in both systems is obtained by thermogravimetric analysis and the EDX spectrum. The reduction reaction kinetics is monitored by UV-vis spectroscopy at different temperatures for both catalytic systems, with the AuAg@pNIPAM@Ag microgels showing superior catalytic performance at all temperatures because of the synergistic effect of the AuAg core and the AgSTs. The principal novelty of this study lies in the "hierarchical" design of the metal-polymer-metal core@shell@satellite nanostructured colloids exhibiting synergistic capabilities of the plasmonic NPs for, among others, temperature-controlled catalytic applications.
Collapse
Affiliation(s)
- Lazaros Tzounis
- Department of Materials Science & Engineering , University of Ioannina , GR-45110 Ioannina , Greece
- Printed Electronic Devices of Things P.C. (PDoT) , Makrinitsis 122 , GR-38333 Volos , Greece
| | - Manuel Doña
- Departamento de Química Orgánica, Facultad de Ciencias , Universidad de Málaga , 29071 Málaga , Spain
| | - Juan Manuel Lopez-Romero
- Departamento de Química Orgánica, Facultad de Ciencias , Universidad de Málaga , 29071 Málaga , Spain
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Str. 6 , 01069 Dresden , Germany
- Physical Chemistry of Polymeric Materials , Technische Universität Dresden , 01069 Dresden , Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
| | - Rafael Contreras-Caceres
- Departamento de Química Orgánica, Facultad de Ciencias , Universidad de Málaga , 29071 Málaga , Spain
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy , Complutense University of Madrid , Plaza Ramon y Cajal , 28040 Madrid , Spain
| |
Collapse
|
17
|
Functionalized polymeric magnetic nanoparticle assisted SERS immunosensor for the sensitive detection of S. typhimurium. Anal Chim Acta 2019; 1067:98-106. [DOI: 10.1016/j.aca.2019.03.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 01/13/2023]
|
18
|
Antimicrobial Activity of Biosynthesized Silver Nanoparticles Decorated Silica Nanoparticles. Indian J Microbiol 2019; 59:379-382. [PMID: 31388218 DOI: 10.1007/s12088-019-00812-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022] Open
Abstract
The production of cheap and effective compound for medicinal application is a major challenge for scientific community. So, several biological materials have been explored for the possible application in material synthesis which are useful in biomedical uses. Here, biomolecules from green tea leaves were functionalized on the surface of silicon dioxide nanoparticles (GSiO2 NPs). Next, the decoration silver (Ag) NPs on the surface of the GSiO2 NPs was observed in very short time of incubation in aqueous AgNO3. Ultraviolet-visible spectroscopy confirmed the formation of Ag NPs and the high-resolution transmission and scanning electron microscopies confirmed the decoration of spherical Ag NPs of 10 to 15 nm size on the surface of GSiO2 NPs. The antimicrobial activity of the Ag-GSiO2 NPs was determined against Staphylococcus aureus and Escherichia coli. The Ag-GSiO2 NPs displayed sustainable antimicrobial activity compared to Ag ions. The results indicate the potential value of Ag-GSiO2 NPs in surgical material and food processing.
Collapse
|
19
|
Zhang J, Ma X, Wang Z. Surface-Enhanced Raman Scattering-Fluorescence Dual-Mode Nanosensors for Quantitative Detection of Cytochrome c in Living Cells. Anal Chem 2019; 91:6600-6607. [PMID: 31026147 DOI: 10.1021/acs.analchem.9b00480] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During apoptosis process, the release of cytochrome c (Cyt c) is considered to be a key factor in the intrinsic pathway and is often defined as no regression point. Quantitative detection of intracellular Cyt c remains a challenge. Herein, we have developed surface-enhanced Raman scattering (SERS)-fluorescence dual-mode nanosensors for the quantitative assay of Cyt c in living cells. Dual signal detection was achieved by constructing gold nanotriangles (AuNTs) nanosensors capable of specifically recognizing Cyt c. The nanosensors were prepared by modifying the aptamer of Cyt c on AuNTs and connecting the complementary strands modified with Cy5. The AuNTs provided both enhanced SERS signals and fluorescence quenching effects. Once cells were induced by external stimulus (such as toxins) to release Cyt c, Cyt c would specifically bind to its aptamer, and the complementary strands modified with Cy5 would detach which would result in weakened SERS signal and recovery of fluorescence signal. The experimental results showed that the nanosensors not only had excellent selectivity and sensitivity but also realized real-time monitoring of Cyt c translocation event from mitochondria to cytoplasm. The SERS and fluorescence intensity showed good linear relationship with Cyt c concentration ranging from 0.044 to 9.95 μM and achieved a minimum limit of detection (LOD) of 0.02 μM in living cells. The accuracy of intracellular Cyt c quantitative results was more than 90% compared with the ELISA results.
Collapse
Affiliation(s)
- Jingna Zhang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China.,School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China.,International Joint Laboratory on Food Safety , Jiangnan University , Wuxi 214122 , P.R. China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China.,School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China.,International Joint Laboratory on Food Safety , Jiangnan University , Wuxi 214122 , P.R. China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China.,School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China.,International Joint Laboratory on Food Safety , Jiangnan University , Wuxi 214122 , P.R. China.,School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116024 , P.R. China
| |
Collapse
|
20
|
Martínez Porcel JE, Rivas Aiello MB, Arce VB, Di Silvio D, Moya SE, Mártire DO. Effect of hybrid SiO2@Ag nanoparticles with raspberry-like morphology on the excited states of the photosensitizers Rose Bengal and riboflavin. NEW J CHEM 2019. [DOI: 10.1039/c9nj01013k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ag+ is released due to a charge transfer process from the triplet state of adsorbed riboflavin to the silver nanoparticles.
Collapse
Affiliation(s)
- Joaquín E. Martínez Porcel
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- Universidad Nacional de La Plata
- La Plata
- Argentina
- Soft Matter Nanotechnology
| | - María Belén Rivas Aiello
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- Universidad Nacional de La Plata
- La Plata
- Argentina
| | - Valeria B. Arce
- Centro de Investigaciones Ópticas (CIOp)
- (CONICET La Plata – CIC – UNLP)
- Gonnet
- Argentina
| | - Desire Di Silvio
- Soft Matter Nanotechnology
- Centre for Cooperative Research in Biomaterials
- CICbiomaGUNE Unidad Biosuperficies
- 20009 San Sebastian
- Spain
| | - Sergio E. Moya
- Soft Matter Nanotechnology
- Centre for Cooperative Research in Biomaterials
- CICbiomaGUNE Unidad Biosuperficies
- 20009 San Sebastian
- Spain
| | - Daniel O. Mártire
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- Universidad Nacional de La Plata
- La Plata
- Argentina
| |
Collapse
|
21
|
Silver nanoparticles/activated carbon composite as a facile SERS substrate for highly sensitive detection of endogenous formaldehyde in human urine by catalytic reaction. Talanta 2018; 188:630-636. [DOI: 10.1016/j.talanta.2018.06.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 11/20/2022]
|
22
|
Waterhouse GIN, Chen WT, Chan A, Sun-Waterhouse D. Achieving Color and Function with Structure: Optical and Catalytic Support Properties of ZrO 2 Inverse Opal Thin Films. ACS OMEGA 2018; 3:9658-9674. [PMID: 31459096 PMCID: PMC6645476 DOI: 10.1021/acsomega.8b01334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/09/2018] [Indexed: 05/14/2023]
Abstract
Taking inspiration from natural photonic crystal architectures, we report herein the successful fabrication of zirconia inverse opal (ZrO2 IO) thin-film photonic crystals possessing striking iridescence at visible wavelengths. Poly(methyl methacrylate) (PMMA) colloidal crystal thin films (synthetic opals) were first deposited on glass microscope slides, after which the interstitial voids in the films were filled with a Zr(IV) sol. Controlled calcination of the resulting composite films yielded iridescent ZrO2 IO thin films with pseudo photonic band gaps (PBGs) along the surface normal at visible wavelengths. The PBG position was dependent on the macropore diameter (D) in the inverse opals (and thus proportional to the diameter of the PMMA colloids in the sacrificial templates), the incident angle of light with respect to the surface normal (θ), and also the refractive index of the medium filling the macropores, all of which were accurately described by a modified Bragg's law expression. Au/ZrO2 IO catalysts prepared using the ZrO2 IO films demonstrated outstanding performance for the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4, which can be attributed to the interconnected macroporosity in the films, which afforded a high Au nanoparticle dispersion and also facile diffusion of 4-nitrophenol to the catalytically active Au sites.
Collapse
Affiliation(s)
- Geoffrey I. N. Waterhouse
- School
of Chemical Sciences, The University of
Auckland, Auckland 1010, New Zealand
- The
MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- The
Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9054, New Zealand
- E-mail: . Tel: 64-9-9237212. Fax: 64-9-373 7422
| | - Wan-Ting Chen
- School
of Chemical Sciences, The University of
Auckland, Auckland 1010, New Zealand
- The
MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- The
Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9054, New Zealand
| | - Andrew Chan
- School
of Chemical Sciences, The University of
Auckland, Auckland 1010, New Zealand
- The
MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- The
Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9054, New Zealand
| | | |
Collapse
|
23
|
Silver oxide decomposition mediated direct bonding of silicon-based materials. Sci Rep 2018; 8:10472. [PMID: 29993004 PMCID: PMC6041264 DOI: 10.1038/s41598-018-28788-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/29/2018] [Indexed: 11/29/2022] Open
Abstract
Silicon-based materials are widely promising electronic components by the combination with metals in power electronics field. However, bonding metal and silicon-based materials generally requires specific surface modification due to their different chemical bonds. Here, we demonstrate a process for directly bonding metals to silicon-based materials that does not require surface treatment, based on the in situ decomposition of Ag2O paste, forming Ag nanoparticles (AgNPs). We demonstrate sound joints of Ag/silicon-based materials at 300–500 °C with the formation of a silicon oxide interlayer containing AgNPs. We propose that Ag in the interlayer attracted other Ag particles to the interface, playing a unique role in this direct bonding process. This process is suitable for various bonding applications in electronics, as well the fabrication of conducting paths for photovoltaic and other applications.
Collapse
|
24
|
Zhou Z, Peng X, Zhong L, Li X, Sun R. Lignin Nanosphere-Supported Cuprous Oxide as an Efficient Catalyst for Huisgen [3+2] Cycloadditions under Relatively Mild Conditions. Polymers (Basel) 2018; 10:E724. [PMID: 30960649 PMCID: PMC6403750 DOI: 10.3390/polym10070724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023] Open
Abstract
In this work, low-cost lignin nanospheres were fabricated and further applied as an efficient and sustainable support for preparing cuprous oxide (Cu₂O) "green" catalyst by using electrospraying technology. The unalloyed lignin, a special three-dimensional molecular structure, was successfully processed into uniform nanospheres under an electrospraying condition. The synthesized lignin-supported Cu₂O catalyst had a well-defined nanosphere structure, and Cu₂O nanoparticles with sizes less than 30 nm were supported by exposed layers of lignin nanospheres. There were C⁻O⁻Cu bonds formed between the lignin nanospheres and the metallic nanoparticles. The lignin nanospheres and the lignin nanosphere-supported catalyst werfe characterized by utilizing XRD, SEM, TEM, XPS, EDS, and TGA. The immobilization of Cu₂O nanoparticles on the lignin nanospheres was beneficial for dispersion of the Cu₂O nanoparticles and preventing their aggregation, which could cause catalyst deactivation, which favored the Huisgen [3+2] cycloaddition reaction. The triazole synthesis results indicated that the lignin nanosphere-supported Cu₂O catalyst had a high catalytic performance with 99% yield under solvent-free conditions. Furthermore, the as-synthesized catalyst could be recycled for four times without significantly losing its catalytic activity.
Collapse
Affiliation(s)
- Zidan Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Linxin Zhong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Xuehui Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Runcang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
25
|
Kuttner C, Mayer M, Dulle M, Moscoso A, López-Romero JM, Förster S, Fery A, Pérez-Juste J, Contreras-Cáceres R. Seeded Growth Synthesis of Gold Nanotriangles: Size Control, SAXS Analysis, and SERS Performance. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11152-11163. [PMID: 29498508 DOI: 10.1021/acsami.7b19081] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We studied the controlled growth of triangular prismatic Au nanoparticles with different beveled sides for surface-enhanced Raman spectroscopy (SERS) applications. First, in a seedless synthesis using 3-butenoic acid (3BA) and benzyldimethylammonium chloride (BDAC), gold nanotriangles (AuNTs) were synthesized in a mixture with gold nanooctahedra (AuNOCs) and separated by depletion-induced flocculation. Here, the influence of temperature, pH, and reducing agent on the reaction kinetics was initially investigated by UV-vis and correlated to the size and yield of AuNT seeds. In a second step, the AuNT size was increased by seed-mediated overgrowth with Au. We show for the first time that preformed 3BA-synthesized AuNT seeds can be overgrown up to a final edge length of 175 nm and a thickness of 80 nm while maintaining their triangular shape and tip sharpness. The NT morphology, including edge length, thickness, and tip rounding, was precisely characterized in dispersion by small-angle X-ray scattering and in dry state by transmission electron microscopy and field-emission scanning electron microscopy. For sensor purposes, we studied the size-dependent SERS performance of AuNTs yielding analytical enhancement factors between 0.9 × 104 and 5.6 × 104 and nanomolar limit of detection (10-8-10-9 M) for 4-mercaptobenzoic acid and BDAC. These results confirm that the 3BA approach allows the fabrication of AuNTs in a whole range of sizes maintaining the NT morphology. This enables tailoring of localized surface plasmon resonances between 590 and 740 nm, even in the near-infrared window of a biological tissue, for use as colloidal SERS sensing agents or for optoelectronic applications.
Collapse
Affiliation(s)
- Christian Kuttner
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Str. 6 , 01069 Dresden , Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
| | - Martin Mayer
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Str. 6 , 01069 Dresden , Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
| | - Martin Dulle
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1) , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - Ana Moscoso
- Departamento de Química Orgánica, Facultad de Ciencias , Universidad de Málaga , 29071 Málaga , Spain
| | - Juan Manuel López-Romero
- Departamento de Química Orgánica, Facultad de Ciencias , Universidad de Málaga , 29071 Málaga , Spain
| | - Stephan Förster
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1) , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Str. 6 , 01069 Dresden , Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
- Physical Chemistry of Polymeric Materials , Technische Universität Dresden , 01069 Dresden , Germany
| | - Jorge Pérez-Juste
- Departamento de Química Física, CINBIO , Universidade de Vigo and IBIV , 36310 Vigo , Spain
| | - Rafael Contreras-Cáceres
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Str. 6 , 01069 Dresden , Germany
- Departamento de Química Orgánica, Facultad de Ciencias , Universidad de Málaga , 29071 Málaga , Spain
| |
Collapse
|
26
|
Vo NT, Patra AK, Kim D. Reductant-Free Synthesis of Silver Nanoparticles by Functionalized Hollow Doughnut Mesoporous Silica Nanoparticles for Preparation of Catalytic Nanoreactor. ChemistrySelect 2018. [DOI: 10.1002/slct.201702918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nhat Tri Vo
- School of Chemical Engineering; Sungkyunkwan University, Suwon; Gyeonggi 16419 (Republic of Korea
| | - Astam K. Patra
- School of Chemical Engineering; Sungkyunkwan University, Suwon; Gyeonggi 16419 (Republic of Korea
| | - Dukjoon Kim
- School of Chemical Engineering; Sungkyunkwan University, Suwon; Gyeonggi 16419 (Republic of Korea
| |
Collapse
|
27
|
Control of the Size of Silver Nanoparticles and Release of Silver in Heat Treated SiO₂-Ag Composite Powders. MATERIALS 2018; 11:ma11010080. [PMID: 29304021 PMCID: PMC5793578 DOI: 10.3390/ma11010080] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 12/23/2022]
Abstract
The growth of silver nanoparticles, the activation energy for silver particle growth, and the release of silver species in heat treated SiO2-Ag composite powders are investigated. The silver particle growth is controlled by heat treatment for 75 min of the as-synthesized SiO2-Ag composite powder at 300–800 °C. During heat treatment the mean size of the Ag particles increases from 10 nm up to 61 nm with increasing temperature, however, the particle size distribution widens and the mean size increases with increasing heat treatment temperature. Based on X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) studies, silver particles are crystalline and in a metallic state after annealing in all SiO2-Ag composite powders. The growth of Ag particles is suggested to take place via diffusion and Ostwald ripening. The activation energy for particle growth was determined as 0.14 eV. The dissolution of silver in aqueous solutions from the SiO2-Ag composites heat treated, at 300 °C, 600 °C, and 700 °C, was investigated by varying pH and temperature. The dissolution was reduced in all conditions with increasing silver particle size, i.e., when the total surface area of Ag particles is reduced. It is suggested that the dissolution of silver from the composite powders can conveniently be adjusted by controlling the Ag particle size by the heat treatment of the composite powder.
Collapse
|
28
|
Poly(3-hexylthiophene)/gold nanoparticle nanocomposites: relationship between morphology and electrical conductivity. CHEMICAL PAPERS 2016. [DOI: 10.1007/s11696-016-0101-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Mendez-Gonzalez D, Alonso-Cristobal P, Lopez-Cabarcos E, Rubio-Retama J. Multi-responsive hybrid Janus nanoparticles: Surface functionalization through solvent physisorption. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Rahman MM, Younes H, Lu JY, Ni G, Yuan S, Fang NX, Zhang T, Al Ghaferi A. Broadband light absorption by silver nanoparticle decorated silica nanospheres. RSC Adv 2016. [DOI: 10.1039/c6ra24052f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ag NPs decorated SiO2 nanospheres for plasmon enhanced light absorption.
Collapse
Affiliation(s)
- Md. Mahfuzur Rahman
- Institute Centre for Energy (iEnergy)
- Mechanical and Materials Engineering Department
- Masdar Institute of Science and Technology (MIST)
- United Arab Emirates
| | - Hammad Younes
- Institute Centre for Energy (iEnergy)
- Mechanical and Materials Engineering Department
- Masdar Institute of Science and Technology (MIST)
- United Arab Emirates
| | - Jin You Lu
- Institute Centre for Energy (iEnergy)
- Mechanical and Materials Engineering Department
- Masdar Institute of Science and Technology (MIST)
- United Arab Emirates
| | - George Ni
- Department of Mechanical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Shaojun Yuan
- College of Chemical Engineering
- Sichuan University
- Chengdu
- China 610065
| | - Nicholas X. Fang
- Department of Mechanical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - TieJun Zhang
- Institute Centre for Energy (iEnergy)
- Mechanical and Materials Engineering Department
- Masdar Institute of Science and Technology (MIST)
- United Arab Emirates
| | - Amal Al Ghaferi
- Institute Centre for Energy (iEnergy)
- Mechanical and Materials Engineering Department
- Masdar Institute of Science and Technology (MIST)
- United Arab Emirates
| |
Collapse
|
31
|
Alonso-Cristobal P, Lopez-Quintela MA, Contreras-Caceres R, Lopez-Cabarcos E, Rubio-Retama J, Laurenti M. Synthesis of catalytically active gold clusters on the surface of Fe3O4@SiO2 nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra20055a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This work proposes a novel method to obtain catalytically active gold clusters by using the water-soluble 5,10,15,20-Tetrakis(4-trimethyl-ammonio-phenyl)porphyrin under mild conditions instead of using strong reducing agents.
Collapse
Affiliation(s)
- Paulino Alonso-Cristobal
- Department of Physical-Chemistry II
- Faculty of Pharmacy
- Universidad Complutense de Madrid
- Madrid
- Spain
| | - M. Arturo Lopez-Quintela
- Grupo Nanomag
- Instituto de Investigacións Tecnolóxicas
- Universidade de Santiago de Compostela
- Spain
| | | | - Enrique Lopez-Cabarcos
- Department of Physical-Chemistry II
- Faculty of Pharmacy
- Universidad Complutense de Madrid
- Madrid
- Spain
| | - Jorge Rubio-Retama
- Department of Physical-Chemistry II
- Faculty of Pharmacy
- Universidad Complutense de Madrid
- Madrid
- Spain
| | - Marco Laurenti
- Department of Physical-Chemistry II
- Faculty of Pharmacy
- Universidad Complutense de Madrid
- Madrid
- Spain
| |
Collapse
|
32
|
Chiu CW, Ou GB. Facile preparation of highly electrically conductive films of silver nanoparticles finely dispersed in polyisobutylene-b-poly(oxyethylene)-b-polyisobutylene triblock copolymers and graphene oxide hybrid surfactants. RSC Adv 2015. [DOI: 10.1039/c5ra21696f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The melted morphologies revealed that the AgNPs possessed mobility, and melted on the film surface, giving a high electrical conductivity of 5.2 × 10−2 Ω sq−1 when heat-treated at 350 °C.
Collapse
Affiliation(s)
- Chih-Wei Chiu
- Department of Materials Science and Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Gang-Bo Ou
- Department of Materials Science and Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| |
Collapse
|
33
|
Jayram ND, Sonia S, Kumar PS, Marimuthu L, Masuda Y, Mangalaraj D, Ponpandian N, Viswanathan C, Ramakrishna S. Highly monodispersed Ag embedded SiO2 nanostructured thin film for sensitive SERS substrate: growth, characterization and detection of dye molecules. RSC Adv 2015. [DOI: 10.1039/c5ra04355g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Highly monodispersed Ag embedded SiO2 nanostructured thin films have been synthesized and their sensitivity towards SERS investigated.
Collapse
Affiliation(s)
- Naidu Dhanpal Jayram
- Department of Nanoscience and Technology
- Bharathiar University
- Coimbatore-641 046
- India
| | - S. Sonia
- Department of Nanoscience and Technology
- Bharathiar University
- Coimbatore-641 046
- India
| | - Palaniswamy Suresh Kumar
- Environmental & Water Technology
- Centre of Innovation
- Ngee Ann Polytechnic
- Singapore 599489
- Singapore
| | - L. Marimuthu
- Department of Nanoscience and Technology
- Bharathiar University
- Coimbatore-641 046
- India
| | - Yoshitake Masuda
- National Institute of Advanced Industrial Science and Technology (AIST)
- Nagoya 463-8560
- Japan
| | - D. Mangalaraj
- Department of Nanoscience and Technology
- Bharathiar University
- Coimbatore-641 046
- India
| | - N. Ponpandian
- Department of Nanoscience and Technology
- Bharathiar University
- Coimbatore-641 046
- India
| | - C. Viswanathan
- Department of Nanoscience and Technology
- Bharathiar University
- Coimbatore-641 046
- India
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology
- Department of Mechanical Engineering
- National University of Singapore
- Singapore 117576
| |
Collapse
|
34
|
Huang Q, Wen S, Zhu X. Synthesis and characterization of an AgI/Ag hybrid nanocomposite with surface-enhanced Raman scattering performance and photocatalytic activity. RSC Adv 2014. [DOI: 10.1039/c4ra04639k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel AgI/Ag hybrid nanocomposites with good SERS performance and excellent photocatalytic activity were prepared.
Collapse
Affiliation(s)
- Qingli Huang
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225009, China
| | - Shengping Wen
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225009, China
| | - Xiashi Zhu
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225009, China
| |
Collapse
|
35
|
Xie Y, Meng Y. SERS performance of graphene oxide decorated silver nanoparticle/titania nanotube array. RSC Adv 2014. [DOI: 10.1039/c4ra07865a] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A schematic illustrates the preparation of recyclable GO/Ag/TiO2 NTA substrate keeping both active SERS detection and photocatalytic self-cleaning properties.
Collapse
Affiliation(s)
- Yibing Xie
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189, China
- Suzhou Research Institute of Southeast University
- Suzhou 215123, China
| | - Yujie Meng
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189, China
- Suzhou Research Institute of Southeast University
- Suzhou 215123, China
| |
Collapse
|