1
|
Jeong AR, Park SR, Shin JW, Kim J, Tokunaga R, Hayami S, Min KS. Mononuclear Fe(III) complexes with 2,4-dichloro-6-((quinoline-8-ylimino)methyl)phenolate: synthesis, structure, and magnetic behavior. Dalton Trans 2024; 53:6809-6817. [PMID: 38545959 DOI: 10.1039/d3dt04385a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Three Fe(III)-based coordination complexes [Fe(dqmp)2](NO3)·H2O (1), [Fe(dqmp)2](BF4)·2CH3COCH3 (2), and [Fe(dqmp)2](ClO4) (3) were synthesized from Fe(NO3)3·9H2O/Fe(ClO4)3·xH2O, NaBF4, and 2,4-dichloro-6-((quinoline-8-ylimino)methyl)phenol (Hdqmp) in methanol/acetone and characterized. The structures of complexes 1-3 were determined via single-crystal X-ray crystallography at 100 K and room temperature, and their magnetic properties in the solid and solution forms were investigated. All complexes showed meridional structures with two tridentate dqmp- ligands coordinated with Fe(III) cations. In the solid state, complex 1 showed an abrupt and complete spin crossover at 225 K, whereas complexes 2 and 3 exhibited an incomplete spin crossover at 135 and 150 K, respectively. In a dimethylformamide solution, the complexes showed counterion-dependent spin transitions. In contrast to the solid state, in solution, complex 1 did not exhibit complete spin crossover. However, complexes 2 and 3 showed more complete spin transitions in solutions than in the solid state. The relaxation times, T1 and T2, for 1 and 2 were determined and both increased with temperature from 220 to 380 K. The T1 of 1 was larger than that of 2 at 380 K, and the T1 values were larger than the T2 values.
Collapse
Affiliation(s)
- Ah Rim Jeong
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Si Ra Park
- Department of Chemistry Education, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jong Won Shin
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jihyun Kim
- Department of Chemistry Education, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ryuya Tokunaga
- Department of Chemistry, Kumamoto University, Kumamoto 860-8555, Japan
| | - Shinya Hayami
- Department of Chemistry, Kumamoto University, Kumamoto 860-8555, Japan
| | - Kil Sik Min
- Department of Chemistry Education, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
2
|
Sundaresan S, Brooker S. Solution Spin Crossover Versus Speciation Effects: A Cautionary Tale. Inorg Chem 2023. [PMID: 37482662 DOI: 10.1021/acs.inorgchem.3c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Two acyclic tetradentate Schiff base ligands, HLX-OH (X = H and Br), were synthesised by 2:1 condensation of either 2-pyridinecarboxaldehyde or 5-bromo-2-pyridinecarboxaldehyde and 1,3-diamino-2-propanol and then used to prepare six mononuclear complexes, [FeII(HLX-OH)(NCE)2], with three different NCE co-ligands (E = BH3, Se, and S). The apparent solution spin crossover switching temperature, T1/2, of these 6 complexes, determined by Evans method NMR studies, is tuned by several factors: (a) substituent X present at the 5 position of the pyridine ring of the ligand, (b) E present in the NCE co-ligand, (c) solvent employed (P'), and (d) potentially also by speciation effects. In CD3CN, for the pair of NCE = NCBH3 complexes, when X = H, the complex is practically LS (extrapolated T1/2 ∼624 K), whereas when X = Br, it is far lower (373 K), which implies a higher field strength when X = H than when it is Br. The same trend, X = H results in a higher apparent T1/2 than X = Br, is seen for the other two pairs of complexes, with E = Se (429 > 351 K, ΔT1/2 = 78 K) or S (361 > 342 K, ΔT1/2 = 19 K). For the family of three X = Br complexes, the change of E from BH3 (373 K) to Se (351 K) to S (342 K) leads to an overall ΔT1/2(apparent) = 31 K, whereas the decreases are far more pronounced in the X = H family (BH3 ∼624 > Se 429 > S 361 K). Changing the solvent used from CD3CN to (CD3)2CO and CD3NO2, for [FeII(HLBr-OH)(NCE)2] with either E = BH3 or S, revealed excellent, and very similar, positive linear correlations (R2 = 0.99) of increasing solvent polarity index P' (from 5 to 7) with increasing apparent T1/2 of the complex (E = BH3 gave T1/2 300 < 373 < 451 K , ΔT1/2 = 151 K; E = S gave T1/2 288 < 342 < 427 K, ΔT1/2 = 147 K). Several other solvent parameters were also correlated with the apparent T1/2 of these complexes (R2 = 0.74-0.96). Excellent linear correlations (R2 = 0.99) are also obtained with the coordination ability (aTM) of the three NCE co-ligands with the apparent T1/2 in both families of compounds, [FeII(HLX-OH)(NCE)2] where X = H or Br. The 15N NMR chemical shifts of the nitrogen atom in the three NCE co-ligands (direct measurement) show modest correlations (R2 = 0.74 for LH-OH family and 0.80 for LBr-OH family) with the apparent T1/2 values of the corresponding complexes.
Collapse
Affiliation(s)
- Sriram Sundaresan
- Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Sally Brooker
- Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
3
|
Nikovskiy I, Aleshin DY, Novikov VV, Polezhaev AV, Khakina EA, Melnikova EK, Nelyubina YV. Selective Pathway toward Heteroleptic Spin-Crossover Iron(II) Complexes with Pyridine-Based N-Donor Ligands. Inorg Chem 2022; 61:20866-20877. [PMID: 36511893 DOI: 10.1021/acs.inorgchem.2c03270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new synthetic pathway is devised to selectively produce previously elusive heteroleptic iron(II) complexes of terpyridine and N,N'-disubstituted bis(pyrazol-3-yl)pyridines that stabilize the opposite spin states of the metal ion. Such a combination of the ligands in a series of the heteroleptic complexes induces the spin-crossover (SCO) not experienced by the homoleptic complexes of these ligands or shifts it to lower/higher temperatures respective to the SCO-active homoleptic complex. The midpoint temperatures of the resulting SCO span from ca. 200 K to the ambient temperature and beyond the highest temperature accessible by NMR spectroscopy and SQUID magnetometry. The proposed "one-pot" approach is applicable to other N-donor ligands to selectively produce heteroleptic complexes─including those inaccessible by alternative synthetic pathways─with highly tunable SCO behaviors for practical applications in sensing, switching, and multifunctional devices.
Collapse
Affiliation(s)
- Igor Nikovskiy
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991Moscow, Russia.,Bauman Moscow State Technical University, 2nd Baumanskaya Str., 5, 105005Moscow, Russia
| | - Dmitry Yu Aleshin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991Moscow, Russia
| | - Valentin V Novikov
- Bauman Moscow State Technical University, 2nd Baumanskaya Str., 5, 105005Moscow, Russia.,Moscow Institute of Physics and Technology, Institutskiy per., 9, 141700Dolgoprudny, Russia
| | - Alexander V Polezhaev
- Bauman Moscow State Technical University, 2nd Baumanskaya Str., 5, 105005Moscow, Russia
| | - Ekaterina A Khakina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991Moscow, Russia.,HSE University, Miasnitskaya Str., 20, 101000Moscow, Russia
| | - Elizaveta K Melnikova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991Moscow, Russia
| | - Yulia V Nelyubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991Moscow, Russia.,Bauman Moscow State Technical University, 2nd Baumanskaya Str., 5, 105005Moscow, Russia
| |
Collapse
|
4
|
Mel’nikova EK, Nikovskii IA, Polezhaev AV, Nelyubina YV. Solvatomorphs of Iron(II) Complex with N,N'-Disubstituted 2,6-Bis(pyrazol-3-yl)pyridine with a Temperature-Induced Spin Transition in Solution. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422080048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract
The reaction of the tridentate ligand 4-(2,6-bis(5-tert-butyl-1-(2,6-dichlorophenyl)-1H-pyrazol-3-yl)pyridin-4-yl)benzonitrile (L) with iron(II) salt gave the complex [Fe(L)2](BF4)2, which was isolated in a pure state and characterized by elemental analysis, NMR spectroscopy, and X-ray diffraction as two crystal polymorphs differing in the nature of the solvent molecule in the crystal (solvatomorphs I and II). According to the results of X-ray diffraction study (CCDC nos. 2104367 (I), 2104368 (II)), the iron(II) ion in these compounds occurs in different spin states and does not undergo a temperature-induced spin transition, which was previously observed for this complex in solution. The details of supramolecular organization of two solvatomorphs that prevent this transition were studied using the Hirshfeld surface analysis.
Collapse
|
5
|
Birchall LT, Truccolo G, Jackson L, Shepherd HJ. Co-crystallisation as a modular approach to the discovery of spin-crossover materials. Chem Sci 2022; 13:3176-3186. [PMID: 35414871 PMCID: PMC8926199 DOI: 10.1039/d1sc04956a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
Herein we present co-crystallisation as a strategy for materials discovery in the field of switchable spin crossover (SCO) systems. Using [Fe(3-bpp)2]·2A (where 3-bpp = 2,6-bis(pyrazol-3-yl)pyridine, A = BF4 -/PF6 -) as a starting point, a total of 11 new cocrystals have been synthesised with five different dipyridyl coformers. Eight of these systems show spin crossover behaviour, and all show dramatically different switching properties from the parent complex. The cocrystals have been studied by variable temperature single-crystal X-ray diffraction and SQUID magnetometry to develop structure-property relationships. The supramolecular architecture of the cocrystals depends on the properties of the coformer. With linear, rigid coformer molecules leading to 1D supramolecular hydrogen-bonded chains, while flexible coformers form 2D sheets and bent coformers yield 3D network structures. The SCO behaviour of the cocrystals can be modified through changing the coformer and thus co-crystallisation presents a rapid, facile and highly modular tool for the discovery of new switchable materials. The wider applicability of this strategy to the design of hybrid multifunctional materials is also discussed.
Collapse
Affiliation(s)
- Lee T Birchall
- School of Physical Sciences, University of Kent Canterbury UK
| | - Giada Truccolo
- School of Physical Sciences, University of Kent Canterbury UK
| | - Lewis Jackson
- School of Physical Sciences, University of Kent Canterbury UK
| | | |
Collapse
|
6
|
Steric Quenching of Mn(III) Thermal Spin Crossover: Dilution of Spin Centers in Immobilized Solutions. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Structural and magnetic properties of a new spin crossover complex [Mn(4,6-diOMe-sal2323)]+ in lattices with ClO4−, (1), NO3−, (2), BF4−, (3), CF3SO3−, (4), and Cl− (5) counterions are reported. Comparison with the magnetostructural properties of the C6, C12, C18 and C22 alkylated analogues of the ClO4− salt of [Mn(4,6-diOMe-sal2323)]+ demonstrates that alkylation effectively switches off the thermal spin crossover pathway and the amphiphilic complexes are all high spin. The spin crossover quenching in the amphiphiles is further probed by magnetic, structural and Raman spectroscopic studies of the PF6− salts of the C6, C12 and C18 complexes of a related complex [Mn(3-OMe-sal2323)]+ which confirm a preference for the high spin state in all cases. Structural analysis is used to rationalize the choice of the spin quintet form in the seven amphiphilic complexes and to highlight the non-accessibility of the smaller spin triplet form of the ion more generally in dilute environments. We suggest that lattice pressure is a requirement to stabilize the spin triplet form of Mn3+ as the low spin form is not known to exist in solution.
Collapse
|
7
|
Spin-Crossover in Iron(II) Complexes of N,N′-Disubstituted 2,6-Bis(Pyrazol-3-yl)Pyridines: An Effect of a Distal Substituent in the 2,6-Dibromophenyl Group. CRYSTALS 2021. [DOI: 10.3390/cryst11080922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of new bis(pyrazol-3-yl)pyridines (LR) N,N′-disubstituted by 4-functionalized 2,6-dibromophenyl groups have been synthesized to study the effect of a distal substituent on the spin-crossover (SCO) behaviour of the iron(II) complexes [Fe(LR)2](ClO4)2 by variable-temperature magnetometry, NMR spectroscopy, and X-ray diffraction. The SCO-assisting tendency of the substituents with different electronic and steric properties (i.e., the bromine atom and the methyl group) in the para-position of the 2,6-dibromophenyl group is discussed. Together with earlier reported SCO-active iron(II) complexes with N,N′-disubstituted bis(pyrazol-3-yl)pyridines, these new complexes open the way for this family of SCO compounds to emerge as an effective ‘tool’ in revealing structure–function relations, a prerequisite for successful molecular design of switchable materials for future breakthrough applications in sensing, switching, and memory devices.
Collapse
|
8
|
Castillo CE, Gamba I, Vicens L, Clémancey M, Latour JM, Costas M, Basallote MG. Spin State Tunes Oxygen Atom Transfer towards Fe IV O Formation in Fe II Complexes. Chemistry 2021; 27:4946-4954. [PMID: 33350013 DOI: 10.1002/chem.202004921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 11/08/2022]
Abstract
Oxoiron(IV) complexes bearing tetradentate ligands have been extensively studied as models for the active oxidants in non-heme iron-dependent enzymes. These species are commonly generated by oxidation of their ferrous precursors. The mechanisms of these reactions have seldom been investigated. In this work, the reaction kinetics of complexes [FeII (CH3 CN)2 L](SbF6 )2 ([1](SbF6 )2 and [2](SbF6 )2 ) and [FeII (CF3 SO3 )2 L] ([1](OTf)2 and [2](OTf)2 (1, L=Me,H Pytacn; 2, L=nP,H Pytacn; R,R' Pytacn=1-[(6-R'-2-pyridyl)methyl]-4,7- di-R-1,4,7-triazacyclononane) with Bu4 NIO4 to form the corresponding [FeIV (O)(CH3 CN)L]2+ (3, L=Me,H Pytacn; 4, L=nP,H Pytacn) species was studied in acetonitrile/acetone at low temperatures. The reactions occur in a single kinetic step with activation parameters independent of the nature of the anion and similar to those obtained for the substitution reaction with Cl- as entering ligand, which indicates that formation of [FeIV (O)(CH3 CN)L]2+ is kinetically controlled by substitution in the starting complex to form [FeII (IO4 )(CH3 CN)L]+ intermediates that are converted rapidly to oxo complexes 3 and 4. The kinetics of the reaction is strongly dependent on the spin state of the starting complex. A detailed analysis of the magnetic susceptibility and kinetic data for the triflate complexes reveals that the experimental values of the activation parameters for both complexes are the result of partial compensation of the contributions from the thermodynamic parameters for the spin-crossover equilibrium and the activation parameters for substitution. The observation of these opposite and compensating effects by modifying the steric hindrance at the ligand illustrates so far unconsidered factors governing the mechanism of oxygen atom transfer leading to high-valent iron oxo species.
Collapse
Affiliation(s)
- Carmen E Castillo
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, y Química Inorgánica, Facultad de Ciencias, Instituto de Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, Cádiz, 11510, Spain
| | - Ilaria Gamba
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, 17071, Catalonia, Spain
| | - Laia Vicens
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, 17071, Catalonia, Spain
| | - Martin Clémancey
- CEA, CNRS, IRIG, DIESE, LCBM, Université Grenoble Alpes, pmb, 38000, Grenoble, France
| | - Jean-Marc Latour
- CEA, CNRS, IRIG, DIESE, LCBM, Université Grenoble Alpes, pmb, 38000, Grenoble, France
| | - Miquel Costas
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, 17071, Catalonia, Spain
| | - Manuel G Basallote
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, y Química Inorgánica, Facultad de Ciencias, Instituto de Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, Cádiz, 11510, Spain
| |
Collapse
|
9
|
Djemel A, Stefańczyk O, Desplanches C, Kumar K, Delimi R, Benaceur F, Ohkoshi SI, Chastanet G. Switching on thermal and light-induced spin crossover by desolvation of the [Fe(3-bpp)2](XO4)2·solvent (X = Cl, Re) compounds. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00446h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermal desolvation is a very attractive method for post-synthetic modification of the physico-chemical properties of switchable materials. In this field of research, special attention is paid to the possibility of...
Collapse
|
10
|
Dey B, Gupta A, Kapurwan S, Konar S. Study of Spin Crossover Property of a Series of X‐OMe‐SalEen (X=6, 5 and 4) Based Fe(III) Complexes. ChemistrySelect 2020. [DOI: 10.1002/slct.202003135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bijoy Dey
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal by-pass road Bhauri Bhopal 462066 India
| | - Arindam Gupta
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal by-pass road Bhauri Bhopal 462066 India
| | - Sandhya Kapurwan
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal by-pass road Bhauri Bhopal 462066 India
| | - Sanjit Konar
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal by-pass road Bhauri Bhopal 462066 India
| |
Collapse
|
11
|
Keisers K, Hüppe HM, Iffland-Mühlhaus L, Hoffmann A, Göbel C, Apfel UP, Weber B, Herres-Pawlis S. Interplay of Spin Crossover and Coordination-Induced Spin State Switch for Iron Bis(pyrazolyl)methanes in Solution. Inorg Chem 2020; 59:15343-15354. [PMID: 33002361 DOI: 10.1021/acs.inorgchem.0c02306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bis(pyrazolyl)bipyridinylmethane iron(II) complexes show a versatile spin state switching behavior in different solvents. In the solid, the magnetic properties of the compounds have been characterized by X-ray diffraction, Mößbauer spectroscopy, and SQUID magnetometry and point toward a high spin state. For nitrilic solvents, the solvation of the complexes leads to a change of the coordination environment from {N5O} to {N6} and results in a temperature-dependent SCO behavior. Thermodynamic properties of this transformation are obtained via UV/vis spectroscopy, SQUID measurements, and the Evans NMR method. Moreover, a coordination-induced spin state switch (CISSS) to low spin is observed by using methanol as solvent, triggered through a rearrangement of the coordination sphere. The same behavior can be observed by changing the stoichiometry of the ligand-to-metal ratio in MeCN, where the process is reversible. This transformation is monitored via UV/vis spectroscopy, and the resulting new bis-meridional coordination motif, first described for bis(pyrazolyl)methanes, is characterized in the solid state via X-ray diffraction, Mößbauer spectroscopy, and SQUID measurements. The sophisticated correlation of these switchable properties in dependence on different types of solvents reveals that the influence of the solvent on the coordination environment and magnetic properties should not be underestimated. Furthermore, careful investigation is necessary to differentiate between a thermally-induced spin crossover and a coordination-induced spin state switch.
Collapse
Affiliation(s)
- Kristina Keisers
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Henrika M Hüppe
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Linda Iffland-Mühlhaus
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Alexander Hoffmann
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Christoph Göbel
- Department of Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.,Fraunhofer UMSICHT, Osterfelder Straße 3, 46047 Oberhausen, Germany
| | - Birgit Weber
- Department of Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Sonja Herres-Pawlis
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| |
Collapse
|
12
|
Spin State Behavior of A Spin-Crossover Iron(II) Complex with N,N′-Disubstituted 2,6-bis(pyrazol-3-yl)pyridine: A Combined Study by X-ray Diffraction and NMR Spectroscopy. CRYSTALS 2020. [DOI: 10.3390/cryst10090793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A series of three different solvatomorphs of a new iron(II) complex with N,N′-disubstituted 2,6-bis(pyrazol-3-yl)pyridine, including those with the same lattice solvent, has been identified by X-ray diffraction under the same crystallization conditions with the metal ion trapped in the different spin states. A thermally induced switching between them, however, occurs in a solution, as unambiguously confirmed by the Evans technique and an analysis of paramagnetic chemical shifts, both based on variable-temperature NMR spectroscopy. The observed stabilization of the high-spin state by an electron-donating substituent contributes to the controversial results for the iron(II) complexes of 2,6-bis(pyrazol-3-yl)pyridines, preventing ‘molecular’ design of their spin-crossover activity; the synthesized complex being only the fourth of the spin-crossover (SCO)-active kind with an N,N′-disubstituted ligand.
Collapse
|
13
|
Pankratova Y, Aleshin D, Nikovskiy I, Novikov V, Nelyubina Y. In Situ NMR Search for Spin-Crossover in Heteroleptic Cobalt(II) Complexes. Inorg Chem 2020; 59:7700-7709. [PMID: 32383584 DOI: 10.1021/acs.inorgchem.0c00716] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Here we report the first successful attempt to identify spin-crossover compounds in solutions of metal complexes produced by mixing different ligands and an appropriate metal salt by variable-temperature nuclear magnetic resonance (NMR) spectroscopy. Screening the spin state of a cobalt(II) ion in a series of thus obtained homoleptic and heteroleptic compounds of terpyridines (terpy) and 2,6-bis(pyrazol-3-yl)pyridines (3-bpp) by using this NMR-based approach, which only relies on the temperature behavior of chemical shifts, revealed the first cobalt(II) complexes with a 3-bpp ligand to undergo a thermally induced spin-crossover. A simple analysis of NMR spectra collected from mixtures of different compounds without their isolation or purification required by the current method of choice, the Evans technique, thus emerges as a powerful tool in a search for new spin-crossover compounds and their molecular design boosted by wide possibilities for chemical modifications in heteroleptic complexes.
Collapse
Affiliation(s)
- Yanina Pankratova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia.,Moscow State University, Leninskie gory, 1, 119991 Moscow, Russia
| | - Dmitry Aleshin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia.,Mendeleev University of Chemical Technology of Russia, Miusskaya pl., 9, 125047 Moscow, Russia
| | - Igor Nikovskiy
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia
| | - Valentin Novikov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia.,Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny 141700, Moscow Region, Russia
| | - Yulia Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia
| |
Collapse
|
14
|
Nikovskiy I, Polezhaev A, Novikov V, Aleshin D, Pavlov A, Saffiulina E, Aysin R, Dorovatovskii P, Nodaraki L, Tuna F, Nelyubina Y. Towards the Molecular Design of Spin-Crossover Complexes of 2,6-Bis(pyrazol-3-yl)pyridines. Chemistry 2020; 26:5629-5638. [PMID: 31967374 DOI: 10.1002/chem.202000047] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Indexed: 01/27/2023]
Abstract
The molecular design of spin-crossover complexes relies on controlling the spin state of a transition metal ion by proper chemical modifications of the ligands. Herein, the first N,N'-disubstituted 2,6-bis(pyrazol-3-yl)pyridines (3-bpp) are reported that, against the common wisdom, induce a spin-crossover in otherwise high-spin iron(II) complexes by increasing the steric demand of a bulky substituent, an ortho-functionalized phenyl group. As N,N'-disubstituted 3-bpp complexes have no pendant NH groups that make their spin state extremely sensitive to the environment, the proposed ligand design, which may be applicable to isomeric 1-bpp or other families of popular bi-, tri- and higher denticity ligands, opens the way for their molecular design as spin-crossover compounds for future breakthrough applications.
Collapse
Affiliation(s)
- Igor Nikovskiy
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991, Moscow, Russia
| | - Alexander Polezhaev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991, Moscow, Russia.,Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005, Moscow, Russia
| | - Valentin Novikov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991, Moscow, Russia.,Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141700, Moscow Region, Russia
| | - Dmitry Aleshin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991, Moscow, Russia.,Mendeleev University of Chemical Technology of Russia, Miusskaya pl., 9, 125047, Moscow, Russia
| | - Alexander Pavlov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991, Moscow, Russia.,Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141700, Moscow Region, Russia
| | - Elnara Saffiulina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991, Moscow, Russia.,Mendeleev University of Chemical Technology of Russia, Miusskaya pl., 9, 125047, Moscow, Russia
| | - Rinat Aysin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991, Moscow, Russia.,Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141700, Moscow Region, Russia
| | - Pavel Dorovatovskii
- National Research Centre "Kurchatov Institute", Akademika Kurchatova pl., 1, 123182, Moscow, Russia
| | - Lydia Nodaraki
- University of Manchester, Oxford Rd., Manchester, M13 9PL, UK
| | - Floriana Tuna
- University of Manchester, Oxford Rd., Manchester, M13 9PL, UK
| | - Yulia Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991, Moscow, Russia.,Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005, Moscow, Russia
| |
Collapse
|
15
|
Dey B, Mondal A, Konar S. Effect of Ligand Field Strength on the Spin Crossover Behaviour in 5‐X‐SalEen (X=Me, Br and OMe) Based Fe(III) Complexes. Chem Asian J 2020; 15:1709-1721. [DOI: 10.1002/asia.202000156] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/14/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Bijoy Dey
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal bypass road, Bhauri Bhopal 462066, MP India
| | - Arpan Mondal
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal bypass road, Bhauri Bhopal 462066, MP India
| | - Sanjit Konar
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal bypass road, Bhauri Bhopal 462066, MP India
| |
Collapse
|
16
|
Pavlov AA, Aleshin DY, Nikovskiy IA, Polezhaev AV, Efimov NN, Korlyukov AA, Novikov VV, Nelyubina YV. New Spin-Crossover Complexes of Substituted 2,6-Bis(pyrazol-3-yl)pyridines. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900432] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexander A. Pavlov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences; Vavilova Str., 28 119991 Moscow Russia
- Moscow Institute of Physics and Technology; Institutskiy per., 9 141700 Dolgoprudny, Moscow Region Russia
| | - Dmitry Yu. Aleshin
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences; Vavilova Str., 28 119991 Moscow Russia
- Mendeleev University of Chemical Technology of Russia; Miusskaya pl., 9 125047 Moscow Russia
| | - Igor A. Nikovskiy
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences; Vavilova Str., 28 119991 Moscow Russia
| | - Alexander V. Polezhaev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences; Vavilova Str., 28 119991 Moscow Russia
- Bauman Moscow State Technical University; 2nd Baumanskaya Str., 5 105005 Moscow Russia
| | - Nikolay N. Efimov
- Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences; Leninsky pr., 31 119991 Moscow Russia
| | - Alexander A. Korlyukov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences; Vavilova Str., 28 119991 Moscow Russia
| | - Valentin V. Novikov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences; Vavilova Str., 28 119991 Moscow Russia
- Moscow Institute of Physics and Technology; Institutskiy per., 9 141700 Dolgoprudny, Moscow Region Russia
| | - Yulia V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences; Vavilova Str., 28 119991 Moscow Russia
- Moscow Institute of Physics and Technology; Institutskiy per., 9 141700 Dolgoprudny, Moscow Region Russia
| |
Collapse
|
17
|
Saiki R, Miyamoto H, Sagayama H, Kumai R, Newton GN, Shiga T, Oshio H. Substituent dependence on the spin crossover behaviour of mononuclear Fe(ii) complexes with asymmetric tridentate ligands. Dalton Trans 2019; 48:3231-3236. [PMID: 30720038 DOI: 10.1039/c9dt00204a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three mononuclear iron(ii) complexes of the formula [FeII(H2L1-3)2](BF4)2·x(solv.) (H2L1-3 = 2-[5-(R-phenyl)-1H-pyrazole-3-yl] 6-benzimidazole pyridine; H2L1: R = 4-methylphenyl, H2L2, R = 2,4,6-trimethylphenyl, H2L3, R = 2,3,4,5,6-pentamethylphenyl) (1, H2L1; 2, H2L2; 3, H2L3) with asymmetric tridentate ligands (H2L1-3) were synthesized and their structures and magnetic behaviour investigated. Significant structural distortions of the dihedral angles between phenyl and pyrazole groups were observed and found to depend on the nature of the substituent groups. Cryomagnetic studies reveal that 1 and 2 show gradual spin crossover behavior, while 3 remains in the high spin state between 1.8 and 300 K.
Collapse
Affiliation(s)
- Ryo Saiki
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Dey B, Roy S, Titiš J, Boča R, Bera SP, Mondal A, Konar S. Above Room Temperature Spin Transition in Thermally Stable Mononuclear Fe(III) Complexes. Inorg Chem 2019; 58:1134-1146. [DOI: 10.1021/acs.inorgchem.8b02405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bijoy Dey
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Subhadip Roy
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Ján Titiš
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Roman Boča
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Siba Prasad Bera
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Arpan Mondal
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Sanjit Konar
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
19
|
|
20
|
Lathion T, Guénée L, Besnard C, Bousseksou A, Piguet C. Deciphering the Influence of Meridional versus Facial Isomers in Spin Crossover Complexes. Chemistry 2018; 24:16873-16888. [PMID: 30171722 DOI: 10.1002/chem.201804161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 11/08/2022]
Abstract
Chelate coordination of non-symmetrical didentate pyrazine-benzimidazole (L1) or pyridine-benzimidazole (L2) N-donor ligands around divalent iron in acetonitrile produces stable homoleptic triple-helical spin crossover [Fe(Lk)3 ]2+ complexes existing as mixtures of meridional (C1 -symmetry) and facial (C3 -symmetry) isomers in slow exchange on the NMR timescale. The speciation deviates from the expected statistical ratio mer/fac=3:1, a trend assigned to the thermodynamic trans-influence, combined with solvation effects. Consequently, the observed spin state FeII low-spin ↔FeII high-spin equilibria occurring in [Fe(Lk)3 ]2+ refer to mixtures of complexes in solution, an issue usually not considered in this field, but which limits rational structure-properties correlations. Taking advantage of the selective and quantitative formation of isostructural facial isomers in non-constrained related spin crossover d-f helicates (HHH)-[LnFe(Lk)3 ]5+ (Ln is a trivalent lanthanide, Lk=L5, L6), we propose a novel strategy for assigning pertinent thermodynamic driving forces to each spin crossover triple-helical isomer. The different enthalpic contributions to the spin state equilibrium found in mer-[Fe(Lk)3 ]2+ and fac-[Fe(Lk)3 ]2+ reflect the Fe-N bond strengths dictated by the trans-influence, whereas a concomitant solvent-based entropic contribution reinforces the latter effect and results in systematic shifts of the spin crossover transitions toward higher temperature in the facial isomers.
Collapse
Affiliation(s)
- Timothée Lathion
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, 1211, Geneva 4, Switzerland
| | - Laure Guénée
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet, 1211, Geneva 4, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet, 1211, Geneva 4, Switzerland
| | - Azzedine Bousseksou
- Laboratory of Coordination Chemistry (LCC), CNRS & Université de Toulouse (UPS, INP), 205 route de Narbonne, Toulouse, 31077 Cedex 4, France
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, 1211, Geneva 4, Switzerland
| |
Collapse
|
21
|
Intramolecular Spin State Locking in Iron(II) 2,6-Di(pyrazol-3-yl)pyridine Complexes by Phenyl Groups: An Experimental Study. MAGNETOCHEMISTRY 2018. [DOI: 10.3390/magnetochemistry4040046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Here we report a series of 1-phenyl-5-substituted 2,6-di(pyrazol-3-yl)pyridine complexes with iron(II) ion found in a high spin state in solids (according to magnetochemistry) and in solution (according to NMR spectroscopy), providing experimental evidence for it being an intramolecular effect induced by the phenyl groups. According to X-ray diffraction, the high spin locking of the metal ion is a result of its highly distorted coordination environment (with a very low ‘twist’ angle atypical of 2,6-di(pyrazol-3-yl)pyridine complexes), which remains this way in complexes with different substituents and counterions, in a diamagnetic zinc(II) analogue and in their solutions. Three possible reasons behind it, including additional coordination with the phenyl group, energy penalty incurred by its rotation or intramolecular stacking interactions, are addressed experimentally.
Collapse
|
22
|
Darawsheh M, Barrios LA, Roubeau O, Teat SJ, Aromí G. Encapsulation of a Cr III Single-Ion Magnet within an Fe II Spin-Crossover Supramolecular Host. Angew Chem Int Ed Engl 2018; 57:13509-13513. [PMID: 30161280 DOI: 10.1002/anie.201807256] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Indexed: 01/10/2023]
Abstract
Single functional molecules are regarded as future components of nanoscale spintronic devices. Supramolecular coordination chemistry provides unlimited resources to implement multiple functions to individual molecules. A novel coordination [Fe2 ] helicate exhibiting spin-crossover is demonstrated to be ideally suited to encapsulate a [Cr(ox)3 ]3- complex anion (ox=oxalate), unveiling for the first-time single ion slow relaxation of the magnetization for this metal. A possibility of tuning the dynamics of this relaxation as well as the performance of the CrIII center as qubit arises from the observation that metastable high spin FeII centers from the host can be generated by irradiation with green light at low temperature.
Collapse
Affiliation(s)
- Mohanad Darawsheh
- Departament de Química Inorgánica i Orgánica, Universitat de Barcelona, Diagonal 645, 08038, Barcelona, Spain
| | - Leoní A Barrios
- Departament de Química Inorgánica i Orgánica, Universitat de Barcelona, Diagonal 645, 08038, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Olivier Roubeau
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain
| | - Simon J Teat
- Advanced Light Source, Berkeley Laboratory, Cyclotron Road, Berkeley, CA, 94720, USA
| | - Guillem Aromí
- Departament de Química Inorgánica i Orgánica, Universitat de Barcelona, Diagonal 645, 08038, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| |
Collapse
|
23
|
Darawsheh M, Barrios LA, Roubeau O, Teat SJ, Aromí G. Encapsulation of a Cr
III
Single‐Ion Magnet within an Fe
II
Spin‐Crossover Supramolecular Host. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mohanad Darawsheh
- Departament de Química Inorgánica i Orgánica Universitat de Barcelona Diagonal 645 08038 Barcelona Spain
| | - Leoní A. Barrios
- Departament de Química Inorgánica i Orgánica Universitat de Barcelona Diagonal 645 08038 Barcelona Spain
- Institute of Nanoscience and Nanotechnology (IN2UB) Universitat de Barcelona Spain
| | - Olivier Roubeau
- Instituto de Ciencia de Materiales de Aragón (ICMA) CSIC and Universidad de Zaragoza Plaza San Francisco s/n 50009 Zaragoza Spain
| | - Simon J. Teat
- Advanced Light Source Berkeley Laboratory Cyclotron Road Berkeley CA 94720 USA
| | - Guillem Aromí
- Departament de Química Inorgánica i Orgánica Universitat de Barcelona Diagonal 645 08038 Barcelona Spain
- Institute of Nanoscience and Nanotechnology (IN2UB) Universitat de Barcelona Spain
| |
Collapse
|
24
|
Scott HS, Staniland RW, Kruger PE. Spin crossover in homoleptic Fe(II) imidazolylimine complexes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Attwood M, Turner SS. Back to back 2,6-bis(pyrazol-1-yl)pyridine and 2,2′:6′,2″-terpyridine ligands: Untapped potential for spin crossover research and beyond. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Bartual-Murgui C, Vela S, Darawsheh M, Diego R, Teat SJ, Roubeau O, Aromí G. A probe of steric ligand substituent effects on the spin crossover of Fe(ii) complexes. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00347a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ligand substituents modulate the SCO temperature of Fe(ii) complexes through intramolecular non-covalent interactions.
Collapse
Affiliation(s)
- C. Bartual-Murgui
- Departament de Química Inorgànica i Orgànica and IN2UB
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - S. Vela
- Laboratoire de Chimie Quantique
- UMR 7177
- CNRS-Université de Strasbourg
- F-67000 Strasbourg
- France
| | - M. Darawsheh
- Departament de Química Inorgànica i Orgànica and IN2UB
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - R. Diego
- Departament de Química Inorgànica i Orgànica and IN2UB
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - S. J. Teat
- Advanced Light Source
- Berkeley Laboratory
- Berkeley
- USA
| | - O. Roubeau
- Instituto de Ciencia de Materiales de Aragón (ICMA)
- CSIC and Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| | - G. Aromí
- Departament de Química Inorgànica i Orgànica and IN2UB
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| |
Collapse
|
27
|
Gaudette AI, Thorarinsdottir AE, Harris TD. pH-Dependent spin state population and 19F NMR chemical shift via remote ligand protonation in an iron(ii) complex. Chem Commun (Camb) 2017; 53:12962-12965. [DOI: 10.1039/c7cc08158h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An FeII complex that features a pH-dependent spin state population and 19F chemical shift, by virtue of a variable ligand protonation state, is described.
Collapse
|
28
|
Serpell CJ, Rutte RN, Geraki K, Pach E, Martincic M, Kierkowicz M, De Munari S, Wals K, Raj R, Ballesteros B, Tobias G, Anthony DC, Davis BG. Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging. Nat Commun 2016; 7:13118. [PMID: 27782209 PMCID: PMC5095174 DOI: 10.1038/ncomms13118] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022] Open
Abstract
The desire to study biology in situ has been aided by many imaging techniques. Among these, X-ray fluorescence (XRF) mapping permits observation of elemental distributions in a multichannel manner. However, XRF imaging is underused, in part, because of the difficulty in interpreting maps without an underlying cellular 'blueprint'; this could be supplied using contrast agents. Carbon nanotubes (CNTs) can be filled with a wide range of inorganic materials, and thus can be used as 'contrast agents' if biologically absent elements are encapsulated. Here we show that sealed single-walled CNTs filled with lead, barium and even krypton can be produced, and externally decorated with peptides to provide affinity for sub-cellular targets. The agents are able to highlight specific organelles in multiplexed XRF mapping, and are, in principle, a general and versatile tool for this, and other modes of biological imaging.
Collapse
Affiliation(s)
- Christopher J. Serpell
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent CT2 7NH, UK
| | - Reida N. Rutte
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Elzbieta Pach
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Markus Martincic
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193 Barcelona, Spain
| | - Magdalena Kierkowicz
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193 Barcelona, Spain
| | - Sonia De Munari
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Kim Wals
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Ritu Raj
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Belén Ballesteros
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Gerard Tobias
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193 Barcelona, Spain
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Benjamin G. Davis
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
29
|
Khusniyarov MM. How to Switch Spin-Crossover Metal Complexes at Constant Room Temperature. Chemistry 2016; 22:15178-15191. [DOI: 10.1002/chem.201601140] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Marat M. Khusniyarov
- Department of Chemistry and Pharmacy; Friedrich-Alexander University Erlangen-Nürnberg (FAU); Egerlandstr. 1 91058 Erlangen Germany
| |
Collapse
|
30
|
The Effect of Ligand Design on Metal Ion Spin State—Lessons from Spin Crossover Complexes. CRYSTALS 2016. [DOI: 10.3390/cryst6050058] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Struch N, Brandenburg JG, Schnakenburg G, Wagner N, Beck J, Grimme S, Lützen A. A Case Study of Mechanical Strain in Supramolecular Complexes to Manipulate the Spin State of Iron(II) Centres. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201501057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Spin state behavior of iron(II)/dipyrazolylpyridine complexes. New insights from crystallographic and solution measurements. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.08.006] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Nemec I, Herchel R, Trávníček Z. The relationship between the strength of hydrogen bonding and spin crossover behaviour in a series of iron(III) Schiff base complexes. Dalton Trans 2015; 44:4474-84. [PMID: 25645590 DOI: 10.1039/c4dt03400g] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-ray crystal structures and magnetic properties of an isostructural series of iron(III) Schiff base complexes with the general formula [Fe(L(5))(NCX)]·Solv (where H2L(5) = N,N'-bis(2-hydroxy-naphthylidene)-1,6-diamino-4-azahexane, X = S, Solv = tetrahydrofuran, 1a; X = S, Solv = methanol and 0.5 pyrazine, 1b; X = S, Solv = butanone, 1c; Solv = N,N'-dimethylformamide, X = S (1d) or X = Se (1d'); X = S, Solv = dimethyl sulfoxide, 1e) are reported. In the crystals, the individual [Fe(L(5))(NCX)] molecules are connected through weak C-H···O, C-H···π or C-H···S non-covalent contacts into 2D supramolecular networks, while the guest-solvent (Solv) molecules are trapped in the cavities between two adjacent layers, which are furthermore stabilized by N-H···O hydrogen bonds connecting the Solv oxygen atom with the amine group of the [Fe(L(5))(NCX)] molecule, with the N···O distances varying from 2.921(6) Å (in 1d') to 3.295(2) Å (in 1a). The magnetic properties of the complexes were tuned by the different Solv molecules and as a result of this, four new spin crossover (SCO) compounds with cooperative spin transitions are reported, which are accompanied by thermal hysteresis in two cases (1d and 1e): , T1/2 = 84 K; 1d, T1/2↓ = 232 K, T1/2↑ = 235 K and 1e, T1/2↓ = 127 K, T1/2↑ = 138 K. The role of the N-H···O hydrogen bonding in the occurrence and tuning of SCO was also computationally studied using a topological analysis, and also by evaluation of non-covalent interaction (NCI) indexes. Both theoretical approaches showed a clear relationship between the strength of the N-H···O hydrogen bonds and T1/2, as already inferred from X-ray structural and magnetic data.
Collapse
Affiliation(s)
- Ivan Nemec
- Regional Centre of Advanced Technologies and Materials, Department of Inorganic Chemistry, Faculty of Science, Palacký University, Tř. 17. listopadu 12, CZ-77146 Olomouc, Czech Republic.
| | | | | |
Collapse
|
34
|
Roberts TD, Little MA, Kershaw Cook LJ, Halcrow MA. Iron(ii) complexes of 2,6-di(1H-pyrazol-3-yl)-pyridine derivatives with hydrogen bonding and sterically bulky substituents. Dalton Trans 2014; 43:7577-88. [PMID: 24705977 DOI: 10.1039/c4dt00355a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Thomas D Roberts
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | | | | | | |
Collapse
|