1
|
Niu X, Lin L, Zhang T, An X, Li Y, Yu Y, Hong M, Shi H, Ding L. Research on antibiotic resistance genes in wild and artificially bred green turtles (Chelonia mydas). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176716. [PMID: 39368512 DOI: 10.1016/j.scitotenv.2024.176716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Sea turtles, vital to marine ecosystems, face population decline. Artificial breeding is a recovery strategy, yet it risks introducing antibiotic resistance genes (ARGs) to wild populations and ecosystems. This study employed metagenomic techniques to compare the distribution characteristics of ARGs in the guts of wild and artificially bred green turtles (Chelonia mydas). The findings revealed that the total abundance of ARGs in C. mydas that have been artificially bred was significantly higher than that in wild individuals. Additionally, the abundance of mobile genetic elements (MGEs) co-occurring with ARGs in artificially bred C. mydas was significantly higher than in wild C. mydas. In the analysis of bacteria carrying ARGs, wild C. mydas exhibited greater bacterial diversity. Furthermore, in artificially bred C. mydas, we discovered 23 potential human pathogenic bacteria (HPB) that contain antibiotic resistance genes. In contrast, in wild C. mydas, only one type of HPB carrying an antibiotic resistance gene was found. The findings of this study not only enhance our understanding of the distribution and dissemination of ARGs within the gut microbial communities of C. mydas, but also provide vital information for assessing the potential impact of releasing artificially bred C. mydas on the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Xin Niu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Liu Lin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Ting Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Xiaoyu An
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Yupei Li
- Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China; Marine Protected Area Administration of Sansha City, Sansha 573199, China
| | - Yangfei Yu
- Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China; Marine Protected Area Administration of Sansha City, Sansha 573199, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China.
| |
Collapse
|
2
|
Peilleron L, Retailleau P, Cariou K. Synthesis of Cyclic
N
‐Hydroxylated Ureas and Oxazolidinone Oximes Enabled by Chemoselective Iodine(III)‐Mediated Radical or Cationic Cyclizations of Unsaturated
N
‐Alkoxyureas. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Laure Peilleron
- Institut de Chimie des Substances Naturelles CNRS UPR 2301, Université Paris-SudUniversité Paris-Saclay Avenue de la Terrasse 91198 Gif-sur-Yvette France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles CNRS UPR 2301, Université Paris-SudUniversité Paris-Saclay Avenue de la Terrasse 91198 Gif-sur-Yvette France
| | - Kevin Cariou
- Institut de Chimie des Substances Naturelles CNRS UPR 2301, Université Paris-SudUniversité Paris-Saclay Avenue de la Terrasse 91198 Gif-sur-Yvette France
| |
Collapse
|
3
|
Nikitina PA, Bormotov NI, Shishkina LN, Tikhonov AY, Perevalov VP. Synthesis and antiviral activity of 1-hydroxy-2-(2-hydroxyphenyl)imidazoles against vaccinia virus. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2467-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
4
|
Nikitina PA, Koldaeva TY, Mityanov VS, Miroshnikov VS, Basanova EI, Perevalov VP. Prototropic Tautomerism and Some Features of the IR Spectra of 2-(3-Chromenyl)-1-hydroxyimidazoles. Aust J Chem 2019. [DOI: 10.1071/ch19222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Prototropic tautomerism of 2-(3-chromenyl)-1-hydroxyimidazoles with various substituents in the chromenyl moiety (1-hydroxyimidazole – imidazole N-oxide) was studied by means of 1H NMR and IR spectroscopies. It was demonstrated that in d6-DMSO solution, the substituents in the chromenyl ring have no influence on the equilibrium shift: the prevalence of the N-oxide tautomeric form is caused by the possibility of stabilization of the planar structure with the help of the carbonyl group in position 5 of the imidazole ring. In contrast, in the solid state the general effect of the chromenyl substituent in position 2 of imidazole plays the leading role. The increase in general electron-withdrawing effect of the chromenyl moiety leads to the prevalence of the imidazole N-oxide tautomer.
Collapse
|
6
|
Nikitina PA, Peregudov AS, Koldaeva TY, Kuz'mina LG, Adiulin EI, Tkach II, Perevalov VP. Synthesis and study of prototropic tautomerism of 2-(2-hydroxyphenyl)-1-hydroxyimidazoles. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.06.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|