1
|
Sinha J, Podgórski M, Huang S, Bowman CN. Multifunctional monomers based on vinyl sulfonates and vinyl sulfonamides for crosslinking thiol-Michael polymerizations: monomer reactivity and mechanical behavior. Chem Commun (Camb) 2018; 54:3034-3037. [PMID: 29512665 DOI: 10.1039/c8cc00782a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Multifunctional vinyl sulfonates and vinyl sulfonamides were conveniently synthesized and assessed in thiol-Michael crosslinking polymerizations. The monomer reactivities, mechanical behavior and hydrolytic properties were analyzed and compared with those of analogous thiol-acrylate polymerizations. Materials with a broad range of mechanical properties and diverse hydrolytic stabilities were obtained.
Collapse
Affiliation(s)
- Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.
| | - Maciej Podgórski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA. and Department of Polymer Chemistry, Faculty of Chemistry, MCS University, Gliniana St. 33, Lublin 20-614, Poland
| | - Sijia Huang
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
2
|
Alaoui S, Dufies M, Driowya M, Demange L, Bougrin K, Robert G, Auberger P, Pagès G, Benhida R. Synthesis and anti-cancer activities of new sulfonamides 4-substituted-triazolyl nucleosides. Bioorg Med Chem Lett 2017; 27:1989-1992. [PMID: 28325600 DOI: 10.1016/j.bmcl.2017.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/11/2022]
Abstract
Nucleoside analogues are among the most known drugs commonly used in antiviral and anticancer chemotherapies. Among them, those featuring a five-membered ring nucleobase are of utmost interest such as the anti-cancer agent AICAR or the anti-viral drug ribavirin. Despite its low activity in vitro in different cell lines, AICAR is under clinical development for several pathologies, thanks to its original mode of action. Indeed, AICAR induced autophagy cell death and is able, following this mechanism, to circumvent resistance to apoptotic drugs including kinase inhibitors currently on the market. To improve the activity of AICAR, we report herein an efficient synthesis of new series of sulfonamide-4-substituted-1,2,3-triazolyl nucleosides using a Cu-catalyzed 1,3-dipolar cycloaddition. All these molecules have been fully characterized and evaluated against two aggressive tumor cell lines, RCC4 and MDA-MB-231. Among them, nucleoside analogue 5i belonging to the ribose series was found to be 19 to 66-fold more active than AICAR. Western blot analyses on RCC4 cells showed that 5i displayed an interesting mode of action by inducing both apoptosis and autophagy cell death, making therefore this class of molecules highly promising for further hit-to-lead optimization.
Collapse
Affiliation(s)
- Soukaina Alaoui
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France; Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Morocco
| | - Maeva Dufies
- Université Côte d'Azur, CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
| | - Mohsine Driowya
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Morocco
| | - Luc Demange
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France; Département de Chimie, Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Pharmaceutiques, 4 avenue de l'Observatoire & UFR Biomédicale des Saints Pères, 45 rue des Saints Pères, Paris Fr-75006, France
| | - Khalid Bougrin
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Morocco
| | - Guillaume Robert
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Patrick Auberger
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Gilles Pagès
- Université Côte d'Azur, CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
| | - Rachid Benhida
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France.
| |
Collapse
|
3
|
Design, synthesis of new chiral fluorine-containing β-hydroxysulfonamides from natural amino acids and study of their anti-inflammatory and analgesic activities. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1590-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Knight AS, Zhou EY, Francis MB, Zuckermann RN. Sequence Programmable Peptoid Polymers for Diverse Materials Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:5665-5691. [PMID: 25855478 DOI: 10.1002/adma.201500275] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 02/13/2015] [Indexed: 06/04/2023]
Abstract
Polymer sequence programmability is required for the diverse structures and complex properties that are achieved by native biological polymers, but efforts towards controlling the sequence of synthetic polymers are, by comparison, still in their infancy. Traditional polymers provide robust and chemically diverse materials, but synthetic control over their monomer sequences is limited. The modular and step-wise synthesis of peptoid polymers, on the other hand, allows for precise control over the monomer sequences, affording opportunities for these chains to fold into well-defined nanostructures. Hundreds of different side chains have been incorporated into peptoid polymers using efficient reaction chemistry, allowing for a seemingly infinite variety of possible synthetically accessible polymer sequences. Combinatorial discovery techniques have allowed the identification of functional polymers within large libraries of peptoids, and newly developed theoretical modeling tools specifically adapted for peptoids enable the future design of polymers with desired functions. Work towards controlling the three-dimensional structure of peptoids, from the conformation of the amide bond to the formation of protein-like tertiary structure, has and will continue to enable the construction of tunable and innovative nanomaterials that bridge the gap between natural and synthetic polymers.
Collapse
Affiliation(s)
- Abigail S Knight
- UC Berkeley Chemistry Department, Latimer Hall, Berkeley, CA, 94720, USA
| | - Effie Y Zhou
- UC Berkeley Chemistry Department, Latimer Hall, Berkeley, CA, 94720, USA
| | - Matthew B Francis
- UC Berkeley Chemistry Department, Latimer Hall, Berkeley, CA, 94720, USA
- The Molecular Foundry Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Ronald N Zuckermann
- The Molecular Foundry Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| |
Collapse
|
5
|
Teng H, Zhang Z, Zhou Y, Chen Z, Chen Q, Liu Y, Xu W. Facile synthesis of urea-and thiocarbamate-tethered glycosyl beta-amino acids. RSC Adv 2015. [DOI: 10.1039/c5ra10622b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An efficient way to synthesize series of new urea- and thiocarbamate-tethered glycosyl β-amino acids under mild conditions was described.
Collapse
Affiliation(s)
- Hanbing Teng
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- People's Republic of China
| | - Zengwei Zhang
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- People's Republic of China
| | - Yifan Zhou
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- People's Republic of China
| | - Zhiyong Chen
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- People's Republic of China
| | - Qi Chen
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- People's Republic of China
| | - Yang Liu
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- People's Republic of China
| | - Wenjin Xu
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- People's Republic of China
| |
Collapse
|