1
|
Damai M, Guzzardi N, Lewis V, Rao ZX, Sykes D, Patel B. Crafting mono- and novel bis-methylated pyrroloquinoxaline derivatives from a shared precursor and its application in the total synthesis of marinoquinoline A. RSC Adv 2023; 13:29561-29567. [PMID: 37822662 PMCID: PMC10562898 DOI: 10.1039/d3ra05952a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
The synthesis of mono- and novel bis-methylated pyrrolo[1,2-a]quinoxalines through the addition of unstable methyl radicals to aryl isocyanides is described contingent upon the reaction conditions employed. The strategy has been effectively employed in the total synthesis of the natural product marinoquinoline A.
Collapse
Affiliation(s)
- Margarita Damai
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Norman Guzzardi
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Viliyana Lewis
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Zenobia X Rao
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Daniel Sykes
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Bhaven Patel
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| |
Collapse
|
2
|
Helesbeux JJ, Carro L, McCarthy FO, Moreira VM, Giuntini F, O’Boyle N, Matthews SE, Bayraktar G, Bertrand S, Rochais C, Marchand P. 29th Annual GP2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2021; 14:ph14121278. [PMID: 34959677 PMCID: PMC8708472 DOI: 10.3390/ph14121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
The 29th Annual GP2A (Group for the Promotion of Pharmaceutical chemistry in Academia) Conference was a virtual event this year due to the COVID-19 pandemic and spanned three days from Wednesday 25 to Friday 27 August 2021. The meeting brought together an international delegation of researchers with interests in medicinal chemistry and interfacing disciplines. Abstracts of keynote lectures given by the 10 invited speakers, along with those of the 8 young researcher talks and the 50 flash presentation posters, are included in this report. Like previous editions, the conference was a real success, with high-level scientific discussions on cutting-edge advances in the fields of pharmaceutical chemistry.
Collapse
Affiliation(s)
| | - Laura Carro
- School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Florence O. McCarthy
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, College Road, T12 K8AF Cork, Ireland;
| | - Vânia M. Moreira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular Sciences, Byrom Street Campus, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Niamh O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 R590 Dublin, Ireland;
| | - Susan E. Matthews
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Gülşah Bayraktar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey;
| | - Samuel Bertrand
- Institut des Substances et Organismes de la Mer, ISOmer, Nantes Université, UR 2160, F-44000 Nantes, France;
| | - Christophe Rochais
- UNICAEN, CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Normandie Univ., F-14032 Caen, France;
| | - Pascal Marchand
- Cibles et Médicaments des Infections et du Cancer, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
- Correspondence: ; Tel.: +33-253-009-155
| |
Collapse
|
3
|
Lynch DM, Scanlan EM. Thiyl Radicals: Versatile Reactive Intermediates for Cyclization of Unsaturated Substrates. Molecules 2020; 25:E3094. [PMID: 32646036 PMCID: PMC7412111 DOI: 10.3390/molecules25133094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/11/2023] Open
Abstract
Sulfur centered radicals are widely employed in chemical synthesis, in particular for alkene and alkyne hydrothiolation towards thioether bioconjugates. The steadfast radical chain process that enables efficient hydrothiolation has been explored in the context of cascade reactions to furnish complex molecular architectures. The use of thiyl radicals offers a much cheaper and less toxic alternative to the archetypal organotin-based radical methods. This review outlines the development of thiyl radicals as reactive intermediates for initiating carbocyclization cascades. Key developments in cascade cyclization methodology are presented and applications for natural product synthesis are discussed. The review provides a chronological account of the field, beginning in the early seventies up to very recent examples; a span of almost 50 years.
Collapse
Affiliation(s)
| | - Eoin M. Scanlan
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland;
| |
Collapse
|
4
|
Li D, Lei J. Thio radical-induced denitrogenative annulation of 1-azido-2-isocyanoarenes to construct 2-thiolated benzimidazoles. Org Biomol Chem 2019; 17:9666-9671. [PMID: 31691703 DOI: 10.1039/c9ob02165e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A method for the synthesis of 2-thiolated benzimidazoles is described starting from thiols and 1-azido-2-isocyanoarenes. The isocyano group works as an acceptor of various thio radicals, followed by denitrogenative annulation of the resulting imidoyl radical intermediates to the azido group, with nitrogen loss as the only process involving high bond-forming efficiency. The one-pot method for the synthesis of these products with high functional group tolerance in the benzimidazole-based ring is not available in previous literature.
Collapse
Affiliation(s)
- Dengke Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, Yunnan, China.
| | - Jian Lei
- College of Chemical Engineering and Material, Quanzhou Normal University, Quanzhou 362000, Fujian, China.
| |
Collapse
|
5
|
Kee JW, Ng YY, Kulkarni SA, Muduli SK, Xu K, Ganguly R, Lu Y, Hirao H, Soo HS. Development of bis(arylimino)acenaphthene (BIAN) copper complexes as visible light harvesters for potential photovoltaic applications. Inorg Chem Front 2016. [DOI: 10.1039/c5qi00221d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Readily synthesized, new bis(arylimino)acenaphthene copper(i) complexes exhibit panchromatic light absorption to the NIR region and function in dye-sensitized solar cells.
Collapse
Affiliation(s)
- J. W. Kee
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
| | - Y. Y. Ng
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
| | - S. A. Kulkarni
- Energy Research Institute@NTU (ERI@N)
- Nanyang Technological University
- Singapore 637553
| | - S. K. Muduli
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Energy Research Institute@NTU (ERI@N)
| | - K. Xu
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
| | - R. Ganguly
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
| | - Y. Lu
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
| | - H. Hirao
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
| | - H. S. Soo
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore-Berkeley Research Initiative for Sustainable Energy (SinBeRISE)
| |
Collapse
|
6
|
Lei J, Huang J, Zhu Q. Recent progress in imidoyl radical-involved reactions. Org Biomol Chem 2016; 14:2593-602. [DOI: 10.1039/c6ob00087h] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review discusses the recent progress in imidoyl radical-involved reactions including the synthesis of functionalized heterocycles, nitriles, imines, amines,etc.
Collapse
Affiliation(s)
- Jian Lei
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530
- China
| | - Jinbo Huang
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530
- China
| | - Qiang Zhu
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530
- China
| |
Collapse
|
7
|
Pan XQ, Zou JP, Yi WB, Zhang W. Recent advances in sulfur- and phosphorous-centered radical reactions for the formation of S–C and P–C bonds. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.04.117] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Cheng Y, Yuan X, Jiang H, Wang R, Ma J, Zhang Y, Yu S. Regiospecific Synthesis of 1-Trifluoromethylisoquinolines Enabled by Photoredox Somophilic Vinyl Isocyanide Insertion. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400504] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|