1
|
Brió Pérez M, Wurm FR, de Beer S. On the Road to Circular Polymer Brushes: Challenges and Prospects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7249-7256. [PMID: 38556745 PMCID: PMC11008239 DOI: 10.1021/acs.langmuir.3c03683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
Polymer brushes are unique surface coatings that have been of high interest in research for the past decades due to their covalent tethering to surfaces and the broad spectrum of polymers that can be grafted to or grafted from various surfaces. Modification of surfaces with brushes may provide lubricious and/or antifouling properties, and they can also potentially be used in many application fields due to their high responsiveness toward certain stimuli. Generally, polymer brushes are long-lasting coatings, while their end-of-life has to date largely been neglected. Therefore, it is important to consider additional design methodologies to produce circular brushes, which will degrade after a certain period of time such that surfaces can be reused, and the potentially obtained monomers may be used again to synthesize new brushes. In this Perspective, we aim to tackle and understand the challenges to translate the knowledge on degradation and chemical recycling of bulk polymers toward circular polymer brushes. We summarized the recent developments on (bio)degradable polymer brushes and the challenges that are to be tackled toward their potential implementation as circular coatings.
Collapse
Affiliation(s)
- Maria Brió Pérez
- Department of Molecules &
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Frederik R. Wurm
- Department of Molecules &
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Department of Molecules &
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
2
|
Kumar S, Arora A, Kumar S, Kumar R, Maity J, Singh BK. Passerini reaction: Synthesis and applications in polymer chemistry. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
3
|
Zhou D, Zhu LW, Wu BH, Xu ZK, Wan LS. End-functionalized polymers by controlled/living radical polymerizations: synthesis and applications. Polym Chem 2022. [DOI: 10.1039/d1py01252e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review focuses on end-functionalized polymers synthesized by controlled/living radical polymerizations and the applications in fields including bioconjugate formation, surface modification, topology construction, and self-assembly.
Collapse
Affiliation(s)
- Di Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liang-Wei Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bai-Heng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ling-Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Li F, Thiele S, Klok HA. Polymethylene Brushes via Surface-Initiated C1 Polyhomologation. J Am Chem Soc 2021; 143:19873-19880. [PMID: 34793151 DOI: 10.1021/jacs.1c09187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface-initiated polymerization reactions are a powerful tool to generate chain-end-tethered polymer brushes. This report presents a synthetic strategy that gives access to structurally well-defined hydrocarbon polymer brushes of controlled molecular weights, which can be further modified to generate more complex surface-attached polymer architectures. The hydrocarbon brushes reported in this study are polymethylene brushes that are obtained via surface-initiated C1 polyhomologation of dimethylsulfoxonium methylide. The strategy outlined here is based on the use of an alkylboronic acid pinacol ester initiator, which allows for controlled, unidirectional chain growth by monomer insertion into only the C-B bond of the initiator and which presents the polymerization active group at the growing polymer chain end. This surface-initiated C1 polyhomologation methodology is compatible with photopatterning strategies and can be used to generate micropatterned polymethylene brush films. Furthermore, conversion of the boronic ester chain-end functionalities to hydroxyl groups allows for selective chain-end modification and enables access to a variety of surface-anchored block copolymer architectures by chain extension via, for example, ring-opening or atom transfer radical polymerization chemistries.
Collapse
Affiliation(s)
- Feng Li
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Batiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Sophia Thiele
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Batiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Batiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Beyou E, Bourgeat-Lami E. Organic–inorganic hybrid functional materials by nitroxide-mediated polymerization. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Li M, Pester CW. Mixed Polymer Brushes for "Smart" Surfaces. Polymers (Basel) 2020; 12:E1553. [PMID: 32668820 PMCID: PMC7408536 DOI: 10.3390/polym12071553] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
Mixed polymer brushes (MPBs) are composed of two or more disparate polymers covalently tethered to a substrate. The resulting phase segregated morphologies have been extensively studied as responsive "smart" materials, as they can be reversible tuned and switched by external stimuli. Both computational and experimental work has attempted to establish an understanding of the resulting nanostructures that vary as a function of many factors. This contribution highlights state-of-the-art MPBs studies, covering synthetic approaches, phase behavior, responsiveness to external stimuli as well as novel applications of MPBs. Current limitations are recognized and possible directions for future studies are identified.
Collapse
Affiliation(s)
- Mingxiao Li
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Christian W. Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Raj W, Russo A, Zhang Y, Chapelat J, Pietrasik J. Renewable Fabric Surface-Initiated ATRP Polymerizations: Towards Mixed Polymer Brushes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E536. [PMID: 32192111 PMCID: PMC7153387 DOI: 10.3390/nano10030536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/04/2020] [Accepted: 03/13/2020] [Indexed: 12/03/2022]
Abstract
A totally new approach in the synthesis of mixed polymer brushes tethered on polyamide (PA) surfaces is presented herein. As a proof of concept, two types of homopolymers were synthesized in sequential surface-initiated atom transfer radical polymerization (SI-ATRP) reactions: poly(methyl methacrylate)/poly((2-dimethylamino)ethyl methacrylate) and polystyrene /poly((2-dimethylamino)ethyl methacrylate). The ATRP initiator was immobilized on the surface through PA chain-end groups in two subsequent steps, separated by homo-polymerizations. The amount of the PA chains' end groups available on the modified surface was tuned by the thermal rearrangement of the surface.
Collapse
Affiliation(s)
- Wojciech Raj
- Lodz University of Technology, Institute of Polymer and Dye Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (W.R.); (Y.Z.)
| | - Alessandro Russo
- Cemex Research Group AG, Römerstrasse 13, 2555 Brüggbei Biel, Switzerland; (A.R.); (J.C.)
| | - Yaoming Zhang
- Lodz University of Technology, Institute of Polymer and Dye Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (W.R.); (Y.Z.)
- Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Julien Chapelat
- Cemex Research Group AG, Römerstrasse 13, 2555 Brüggbei Biel, Switzerland; (A.R.); (J.C.)
| | - Joanna Pietrasik
- Lodz University of Technology, Institute of Polymer and Dye Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (W.R.); (Y.Z.)
| |
Collapse
|
8
|
Mocny P, Klok HA. Complex polymer topologies and polymer—nanoparticle hybrid films prepared via surface-initiated controlled radical polymerization. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101185] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Yi C, Yang Y, Liu B, He J, Nie Z. Polymer-guided assembly of inorganic nanoparticles. Chem Soc Rev 2019; 49:465-508. [PMID: 31845685 DOI: 10.1039/c9cs00725c] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The self-assembly of inorganic nanoparticles is of great importance in realizing their enormous potentials for broad applications due to the advanced collective properties of nanoparticle ensembles. Various molecular ligands (e.g., small molecules, DNAs, proteins, and polymers) have been used to assist the organization of inorganic nanoparticles into functional structures at different hierarchical levels. Among others, polymers are particularly attractive for use in nanoparticle assembly, because of the complex architectures and rich functionalities of assembled structures enabled by polymers. Polymer-guided assembly of nanoparticles has emerged as a powerful route to fabricate functional materials with desired mechanical, optical, electronic or magnetic properties for a broad range of applications such as sensing, nanomedicine, catalysis, energy storage/conversion, data storage, electronics and photonics. In this review article, we summarize recent advances in the polymer-guided self-assembly of inorganic nanoparticles in both bulk thin films and solution, with an emphasis on the role of polymers in the assembly process and functions of resulting nanostructures. Precise control over the location/arrangement, interparticle interaction, and packing of inorganic nanoparticles at various scales are highlighted.
Collapse
Affiliation(s)
- Chenglin Yi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.
| | - Yiqun Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.
| | - Ben Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China and Department of Chemistry and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06268, USA.
| | - Jie He
- Department of Chemistry and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06268, USA.
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.
| |
Collapse
|
10
|
Chancellor AJ, Seymour BT, Zhao B. Characterizing Polymer-Grafted Nanoparticles: From Basic Defining Parameters to Behavior in Solvents and Self-Assembled Structures. Anal Chem 2019; 91:6391-6402. [PMID: 31013073 DOI: 10.1021/acs.analchem.9b00707] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polymer-grafted nanoparticles, often called hairy nanoparticles (HNPs), are an intriguing class of nanostructured hybrid materials with great potential in a variety of applications, including advanced polymer nanocomposite fabrication, drug delivery, imaging, and lubrication. This Feature provides an introduction to characterization of various aspects of HNPs, from basic defining parameters to behavior of HNPs in solvents and self-assembled structures of multicomponent brush nanoparticles, by using a broad range of analytical tools.
Collapse
Affiliation(s)
- Andrew J Chancellor
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Bryan T Seymour
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Bin Zhao
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
11
|
Zhang S, Liu W, Dong Y, Wei T, Wu Z, Chen H. Design, Synthesis, and Application of a Difunctional Y-Shaped Surface-Tethered Photoinitiator. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3470-3478. [PMID: 30727730 DOI: 10.1021/acs.langmuir.8b04323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mixed homopolymer brushes have unique interfacial properties that can be exploited for both fundamental studies and applications in technology. Herein, the synthesis of a new catechol-based biomimetic Y-shaped binary photoinitiator (Y-photoinitiator) and its applications for surface modification with polymer brushes through both "grafting to" and "grafting from" strategies are reported. The "leg" of the Y consists of a catechol group as surface anchoring moiety. The arms are photoinitiator moieties that can be "addressed" independent of each other by radiation of different wavelengths. Using ultraviolet and visible light successively, each arm of the Y-photoinitiator was activated, thereby allowing the synthesis of Y-shaped block copolymer brushes with dissimilar polymer chains. The suitability of the Y-photoinitiator for surface modification was first investigated using N-vinylpyrrolidone and styrene as the model monomers for successive UV-photoiniferter-mediated polymerization and visible-light-induced polymerization, respectively. Switching of the wetting properties of the Y-shaped block copolymer brush poly( N-vinylpyrrolidone)- block-poly(styrene) (PVP- b-PS)-grafted surfaces by contact with different solvents was also investigated. To further exploit this novel Y-photoinitiator for the preparation of functional interfaces, Y-shaped block copolymer brushes poly(1-(2-methacryloyloxyhexyl)-3-methylimidazolium bromide)- block-poly( N-vinylpyrrolidone- co-glycidyl methacrylate) (PIL(Br)- b-P(NVP- co-GMA)) were also prepared and subsequently functionalized with the cell-adhesive arginine-glycine-aspartic acid (RGD) peptides by reaction with the glycidyl groups (PILPNG-RGD). The PILPNG-RGD grafted surfaces showed excellent cell-adhesive, bacteriostatic, and bactericidal properties. Thus, it can be concluded that further exploitation of this novel Y-photoinitiator for graft polymerization should allow the preparation of a wide range of functional interfaces with tailored properties.
Collapse
Affiliation(s)
- Shuxiang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Wenying Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Yishi Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Zhaoqiang Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
12
|
Demirci S, Kinali-Demirci S, Jiang S. A switchable polymer brush system for antifouling and controlled detection. Chem Commun (Camb) 2018; 53:3713-3716. [PMID: 28300248 DOI: 10.1039/c7cc00193b] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A stimuli-responsive polymer brush system is designed to switch on and off surface functionality and prevent functional groups from fouling by grafting together two polymer brushes with precisely controlled lengths. The polymer brush with functional groups has a fixed length, while the other brush extends and collapses as the environment changes.
Collapse
Affiliation(s)
- Serkan Demirci
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA. and Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA. and Department of Chemistry, Amasya University, Amasya 05100, Turkey
| | - Selin Kinali-Demirci
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA. and Department of Chemistry, Amasya University, Amasya 05100, Turkey
| | - Shan Jiang
- Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA. and Division of Materials Science & Engineering, Ames National Laboratory, Ames, Iowa 50011, USA
| |
Collapse
|
13
|
Pan C, Liu X, Gong K, Mumtaz F, Wang Y. Dopamine assisted PMOXA/PAA brushes for their switchable protein adsorption/desorption. J Mater Chem B 2018; 6:556-567. [DOI: 10.1039/c7tb02209c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PMOXA/PAA mixed brushes with switchable protein adsorption/desorption properties were prepared by sequentially grafting PMOXA-NH2 and PAA-SH onto PDA-coated substrates.
Collapse
Affiliation(s)
- Chao Pan
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Xiaoru Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Kai Gong
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Fatima Mumtaz
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Yanmei Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| |
Collapse
|
14
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 610] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Liu XH, Zhang QY, Di WL, Zhang YG, Ding C. A novel copper catalyst containing a hydroxyl functional group: a facile strategy to prepare block copolymers of vinyl monomer and ε-caprolactone via tandem reverse ATRP and ROP. Polym Chem 2017. [DOI: 10.1039/c7py01040k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A facile hydroxyl-functionalized catalyst was first accessed to prepare block copolymers of vinyl and cyclic ester monomers via tandem reverse ATRP/ROP.
Collapse
Affiliation(s)
- Xiao-hui Liu
- School of Materials Science and Engineering
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Qiu-yan Zhang
- School of Materials Science and Engineering
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Wen-li Di
- School of Materials Science and Engineering
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Yan-guang Zhang
- School of Materials Science and Engineering
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Chen Ding
- School of Materials Science and Engineering
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| |
Collapse
|
16
|
Cao E, Prouzet E, Héroguez V. Harnessing the power of latex solutions based on titania particles − using si-ATRP towards larger surface modification for applications in gas separation membranes. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.04.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Kermagoret A, Gigmes D. Combined nitroxide mediated radical polymerization techniques for block copolymer synthesis. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Modification of Silica Nanoparticles with Miktoarm Polymer Brushes via ATRP. J Inorg Organomet Polym Mater 2016. [DOI: 10.1007/s10904-016-0427-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Dalier F, Eghiaian F, Scheuring S, Marie E, Tribet C. Temperature-Switchable Control of Ligand Display on Adlayers of Mixed Poly(lysine)-g-(PEO) and Poly(lysine)-g-(ligand-modified poly-N-isopropylacrylamide). Biomacromolecules 2016; 17:1727-36. [DOI: 10.1021/acs.biomac.6b00136] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- F. Dalier
- Ecole Normale
Supérieure-PSL Research University, Dpt Chimie, Sorbonne Universités
- UPMC Univ. Paris 06, CNRS UMR 8640, 24 rue Lhomond, 75005 Paris, France
| | - F. Eghiaian
- U1006 INSERM,
Aix-Marseille Université, Parc Scientifique et Technologique
de Luminy, 163 av. de Luminy, 13009 Marseille, France
| | - S. Scheuring
- U1006 INSERM,
Aix-Marseille Université, Parc Scientifique et Technologique
de Luminy, 163 av. de Luminy, 13009 Marseille, France
| | - E. Marie
- Ecole Normale
Supérieure-PSL Research University, Dpt Chimie, Sorbonne Universités
- UPMC Univ. Paris 06, CNRS UMR 8640, 24 rue Lhomond, 75005 Paris, France
| | - C. Tribet
- Ecole Normale
Supérieure-PSL Research University, Dpt Chimie, Sorbonne Universités
- UPMC Univ. Paris 06, CNRS UMR 8640, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
20
|
Cao E, Pichavant L, Prouzet E, Héroguez V. The formation and study of poly(ethylene oxide)-poly(norbornene) block-copolymers on the surface of titanium-dioxide particles: a novel approach towards application of si-ROMP to larger surface modification. Polym Chem 2016. [DOI: 10.1039/c5py02039e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work highlights the potential of si-ROMP through use of easier to functionalize titania particles that form hybrid titania-copolymers applied to larger scale coatings.
Collapse
Affiliation(s)
- Edgar Cao
- Laboratoire de Chimie des Polymères Organiques – Ecole Nationale Supérieure de Chimie
- de Biologie et de Physique
- UMR CNRS 5629
- Université de Bordeaux
- F-33607 Pessac Cedex
| | - Loïc Pichavant
- Laboratoire de Chimie des Polymères Organiques – Ecole Nationale Supérieure de Chimie
- de Biologie et de Physique
- UMR CNRS 5629
- Université de Bordeaux
- F-33607 Pessac Cedex
| | - Eric Prouzet
- Department of Chemical Engineering and the Waterloo Institute for Nanotechnology (WIN)
- University of Waterloo
- Chemistry
- 200 University Av. W
- Waterloo N2L 3G1
| | - Valérie Héroguez
- Laboratoire de Chimie des Polymères Organiques – Ecole Nationale Supérieure de Chimie
- de Biologie et de Physique
- UMR CNRS 5629
- Université de Bordeaux
- F-33607 Pessac Cedex
| |
Collapse
|
21
|
Malinge J, Mousseau F, Zanchi D, Brun G, Tribet C, Marie E. Tailored stimuli-responsive interaction between particles adjusted by straightforward adsorption of mixed layers of Poly(lysine)-g-PEG and Poly(lysine)-g-PNIPAM on anionic beads. J Colloid Interface Sci 2016; 461:50-55. [DOI: 10.1016/j.jcis.2015.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/01/2015] [Accepted: 09/06/2015] [Indexed: 11/17/2022]
|
22
|
Qiao Y, Yin X, Wang L, Islam MS, Benicewicz BC, Ploehn HJ, Tang C. Bimodal Polymer Brush Core–Shell Barium Titanate Nanoparticles: A Strategy for High-Permittivity Polymer Nanocomposites. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b02018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yali Qiao
- Department of Chemistry and Biochemistry and ‡Department of
Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Xiaodong Yin
- Department of Chemistry and Biochemistry and ‡Department of
Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Lei Wang
- Department of Chemistry and Biochemistry and ‡Department of
Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Md. Sayful Islam
- Department of Chemistry and Biochemistry and ‡Department of
Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Brian C. Benicewicz
- Department of Chemistry and Biochemistry and ‡Department of
Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Harry J. Ploehn
- Department of Chemistry and Biochemistry and ‡Department of
Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry and ‡Department of
Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
23
|
From Self-Assembled Monolayers to Coatings: Advances in the Synthesis and Nanobio Applications of Polymer Brushes. Polymers (Basel) 2015. [DOI: 10.3390/polym7071346] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
24
|
Calabrese DR, Ditter D, Liedel C, Blumfield A, Zentel R, Ober CK. Design, Synthesis, and Use of Y-Shaped ATRP/NMP Surface Tethered Initiator. ACS Macro Lett 2015; 4:606-610. [PMID: 35596400 DOI: 10.1021/acsmacrolett.5b00175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heterogeneous polymer brushes on surfaces can be easily formed from a binary initiator on a silicon oxide substrate where two different types of polymers can be grown side-by-side. Herein, we designed a new Y-shaped binary initiator using straightforward chemistry for "grafting from" polymer brushes. This initiator synthesis takes advantage of the Passerini reaction, a multicomponent reaction combining two initiator sites and one surface linking site. This Y-shaped binary initiator can be synthesized in three steps with a higher yield than other similar initiators reported in the literature, and can be performed on a multigram scale. We were able to attach the initiator to a silicon oxide substrate and successfully grow polymer brushes from both initiators (separately and in combination), confirmed by NEXAFS, AFM, and contact angle.
Collapse
Affiliation(s)
| | - David Ditter
- Institute
of Organic Chemistry, University of Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | | | | | - Rudolf Zentel
- Institute
of Organic Chemistry, University of Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | | |
Collapse
|
25
|
Wu L, Glebe U, Böker A. Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles. Polym Chem 2015. [DOI: 10.1039/c5py00525f] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes recent progress in surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles.
Collapse
Affiliation(s)
- Lei Wu
- Fraunhofer Institute for Applied Polymer Research IAP
- 14476 Potsdam-Golm
- Germany
- DWI – Leibniz Institute for Interactive Materials e.V
- Lehrstuhl für Makromolekulare Materialien und Oberflächen
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP
- 14476 Potsdam-Golm
- Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP
- 14476 Potsdam-Golm
- Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie
- Universität Potsdam
| |
Collapse
|
26
|
Zheng X, Zhang C, Bai L, Liu S, Tan L, Wang Y. Antifouling property of monothiol-terminated bottle-brush poly(methylacrylic acid)-graft-poly(2-methyl-2-oxazoline) copolymer on gold surfaces. J Mater Chem B 2015; 3:1921-1930. [DOI: 10.1039/c4tb01766h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A series of well-controlled bottle-brush poly(methylacrylic acid)-graft-poly(2-methyl-2-oxazoline) copolymers were grafted to gold surfaces through an in situ aminolysis reaction to reduce protein adsorption and platelet adhesion.
Collapse
Affiliation(s)
- Xiajun Zheng
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Chong Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Longchao Bai
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Songtao Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Lin Tan
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Yanmei Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| |
Collapse
|
27
|
Bao C, Tang S, Wright RAE, Tang P, Qiu F, Zhu L, Zhao B. Effect of Molecular Weight on Lateral Microphase Separation of Mixed Homopolymer Brushes Grafted on Silica Particles. Macromolecules 2014. [DOI: 10.1021/ma501474m] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Chunhui Bao
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Saide Tang
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Roger A. E. Wright
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ping Tang
- Department
of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Feng Qiu
- Department
of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Lei Zhu
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Bin Zhao
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|