1
|
Lee H, Heo E, Yoon H. Physically Exfoliating 2D Materials: A Versatile Combination of Different Materials into a Layered Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18678-18695. [PMID: 38095583 DOI: 10.1021/acs.langmuir.3c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Improving the properties of the existing two-dimensional (2D) materials is a major concern for many researchers today. Synergistic coupling of single-phase 2D material species with secondary functional materials has resulted in 2D nanohybrids with significantly enhanced properties beyond the sum of their individual components. In particular, nanohybrids created by alternatingly integrating different material species in the confined 2D nanometer regime have the potential to meet the needs of a wide variety of applications, particularly the many important energy-related applications that are of interest. However, scaling up production of 2D nanohybrids is still challenging, which is a major barrier to their practical application. Delamination and exfoliation by physical means separate the weakly bound 2D nanosheets into kinetically stable single- or few-layers. Herein, we provide a concise overview of recent achievements in the physical exfoliation-based fabrication of 2D nanohybrids featuring controlled heterolayered structures. Several strategies to efficiently produce heterolayered 2D nanohybrids in large quantities are described, such as (i) coexfoliation of different 2D species, (ii) aqueous-phase synthesis, and (iii) gas-phase synthesis. The versatility of the 2D nanohybrids was also illustrated by remarkable research examples, especially in energy-related applications.
Collapse
Affiliation(s)
- Haney Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Eunseo Heo
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| |
Collapse
|
2
|
Xia X, Yang J, Liu Y, Zhang J, Shang J, Liu B, Li S, Li W. Material Choice and Structure Design of Flexible Battery Electrode. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204875. [PMID: 36403240 PMCID: PMC9875691 DOI: 10.1002/advs.202204875] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Indexed: 06/16/2023]
Abstract
With the development of flexible electronics, the demand for flexibility is gradually put forward for its energy supply device, i.e., battery, to fit complex curved surfaces with good fatigue resistance and safety. As an important component of flexible batteries, flexible electrodes play a key role in the energy density, power density, and mechanical flexibility of batteries. Their large-scale commercial applications depend on the fulfillment of the commercial requirements and the fabrication methods of electrode materials. In this paper, the deformable electrode materials and structural design for flexible batteries are summarized, with the purpose of flexibility. The advantages and disadvantages of the application of various flexible materials (carbon nanotubes, graphene, MXene, carbon fiber/carbon fiber cloth, and conducting polymers) and flexible structures (buckling structure, helical structure, and kirigami structure) in flexible battery electrodes are discussed. In addition, the application scenarios of flexible batteries and the main challenges and future development of flexible electrode fabrication are also discussed, providing general guidance for the research of high-performance flexible electrodes.
Collapse
Affiliation(s)
- Xiangling Xia
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, China
| | - Jack Yang
- Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yang Liu
- College of Sciences, Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
- Shaoxing Institute of Technology, Shanghai University, Shaoxing, 312000, China
| | - Jiujun Zhang
- College of Sciences, Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
- School of Materials Science and Engineering, Fuzhou University, Fujian, 350108, China
| | - Jie Shang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Bin Liu
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, China
| | - Sean Li
- Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wenxian Li
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, China
- Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- College of Sciences, Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
3
|
Lee S, Park CS, Yoon H. Nanoparticulate Photoluminescent Probes for Bioimaging: Small Molecules and Polymers. Int J Mol Sci 2022; 23:4949. [PMID: 35563340 PMCID: PMC9100005 DOI: 10.3390/ijms23094949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022] Open
Abstract
Recent interest in research on photoluminescent molecules due to their unique properties has played an important role in advancing the bioimaging field. In particular, small molecules and organic dots as probes have great potential for the achievement of bioimaging because of their desirable properties. In this review, we provide an introduction of probes consisting of fluorescent small molecules and polymers that emit light across the ultraviolet and near-infrared wavelength ranges, along with a brief summary of the most recent techniques for bioimaging. Since photoluminescence probes emitting light in different ranges have different goals and targets, their respective strategies also differ. Diverse and novel strategies using photoluminescence probes against targets have gradually been introduced in the related literature. Among recent papers (published within the last 5 years) on the topic, we here concentrate on the photophysical properties and strategies for the design of molecular probes, with key examples of in vivo photoluminescence research for practical applications. More in-depth studies on these probes will provide key insights into how to control the molecular structure and size/shape of organic probes for expanded bioimaging research and applications.
Collapse
Affiliation(s)
- Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - Chul Soon Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
4
|
Kim Y, Lee S, Yoon H. Fire-Safe Polymer Composites: Flame-Retardant Effect of Nanofillers. Polymers (Basel) 2021; 13:540. [PMID: 33673106 PMCID: PMC7918670 DOI: 10.3390/polym13040540] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Currently, polymers are competing with metals and ceramics to realize various material characteristics, including mechanical and electrical properties. However, most polymers consist of organic matter, making them vulnerable to flames and high-temperature conditions. In addition, the combustion of polymers consisting of different types of organic matter results in various gaseous hazards. Therefore, to minimize the fire damage, there has been a significant demand for developing polymers that are fire resistant or flame retardant. From this viewpoint, it is crucial to design and synthesize thermally stable polymers that are less likely to decompose into combustible gaseous species under high-temperature conditions. Flame retardants can also be introduced to further reinforce the fire performance of polymers. In this review, the combustion process of organic matter, types of flame retardants, and common flammability testing methods are reviewed. Furthermore, the latest research trends in the use of versatile nanofillers to enhance the fire performance of polymeric materials are discussed with an emphasis on their underlying action, advantages, and disadvantages.
Collapse
Affiliation(s)
- Yukyung Kim
- R&D Laboratory: Korea Fire Institute, 331 Jisam-ro, Giheung-gu, Yongin-si, Gyeonggi-do 17088, Korea;
| | - Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
5
|
Li M, Tao C, Zhu G, Zhang H, Lin B, Zhang X, Yang H, Guo L, Sun Y. 1,3,6,8-Pyrenetetrasulfonic acid anchored doping to prepare solution-processable polyaniline for electrochromic supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj01178b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new strategy to improve the ion transmission and stability of ESCs by introducing an anchored dopant during the polymerization of PANI has been proposed.
Collapse
Affiliation(s)
- Man Li
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Chongxin Tao
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Guanqun Zhu
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Huijun Zhang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Baoping Lin
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Xueqin Zhang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Hong Yang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Lingxiang Guo
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Ying Sun
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| |
Collapse
|
6
|
Noh S, Le TH, Park CS, Kim S, Kim Y, Park JJ, Yoon H. Physical exfoliation of graphene and molybdenum disulfide sheets using conductive polyaniline: an efficient route for synthesizing unique, random-layered 3D ternary electrode materials. NEW J CHEM 2018. [DOI: 10.1039/c8nj03762k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unique ternary graphene/MoS2/PANI nanoarchitectures with beneficial properties are synthesized via a simple, physical exfoliation approach.
Collapse
Affiliation(s)
- Seonmyeong Noh
- Alan G. MacDiarmid Energy Research Institute
- School of Polymer Science and Engineering
- Chonnam National University
- Gwangju 61186
- South Korea
| | - Thanh-Hai Le
- Department of Polymer Engineering
- Graduate School
- Chonnam National University
- Gwangju 61186
- South Korea
| | - Chul Soon Park
- Department of Polymer Engineering
- Graduate School
- Chonnam National University
- Gwangju 61186
- South Korea
| | - Saerona Kim
- Department of Polymer Engineering
- Graduate School
- Chonnam National University
- Gwangju 61186
- South Korea
| | - Yukyung Kim
- Department of Polymer Engineering
- Graduate School
- Chonnam National University
- Gwangju 61186
- South Korea
| | - Jong-Jin Park
- Alan G. MacDiarmid Energy Research Institute
- School of Polymer Science and Engineering
- Chonnam National University
- Gwangju 61186
- South Korea
| | - Hyeonseok Yoon
- Alan G. MacDiarmid Energy Research Institute
- School of Polymer Science and Engineering
- Chonnam National University
- Gwangju 61186
- South Korea
| |
Collapse
|
7
|
Kong HJ, Kim S, Le TH, Kim Y, Park G, Park CS, Kwon OS, Yoon H. Nanostructured mesophase electrode materials: modulating charge-storage behavior by thermal treatment. NANOSCALE 2017; 9:17450-17458. [PMID: 29105721 DOI: 10.1039/c7nr05842j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
3D nanostructured carbonaceous electrode materials with tunable capacitive phases were successfully developed using graphene/particulate polypyrrole (PPy) nanohybrid (GPNH) precursors without a separate process for incorporating heterogeneous species. The electrode material, namely carbonized GPNHs (CGPNHs) featured a mesophase capacitance consisting of both electric double-layer (EDL) capacitive and pseudocapacitive elements at the molecular level. The ratio of EDL capacitive element to pseudocapacitive element (E-to-P) in the mesophase electrode materials was controlled by varying the PPy-to-graphite weight (Pw/Gw) ratio and by heat treatment (TH), which was demonstrated by characterizing the CGPNHs with elemental analysis, cyclic voltammetry, and a charge/discharge test. The concept of the E-to-P ratio (EPR) index was first proposed to easily identify the capacitive characteristics of the mesophase electrode using a numerical algorithm, which was reasonably consistent with the experimental findings. Finally, the CGPNHs were integrated into symmetric two-electrode capacitor cells, which rendered excellent energy and power densities in both aqueous and ionic liquid electrolytes. It is anticipated that our approach could be widely extended to fabricating versatile hybrid electrode materials with estimation of their capacitive characteristics.
Collapse
Affiliation(s)
- Hye Jeong Kong
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kim S, Le TH, Park CS, Park G, Kim KH, Kim S, Kwon OS, Lim GT, Yoon H. A Solution-Processable, Nanostructured, and Conductive Graphene/Polyaniline Hybrid Coating for Metal-Corrosion Protection and Monitoring. Sci Rep 2017; 7:15184. [PMID: 29123206 PMCID: PMC5680262 DOI: 10.1038/s41598-017-15552-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/23/2017] [Indexed: 11/19/2022] Open
Abstract
A smart and effective anticorrosive coating consisting of alternating graphene and polyaniline (PANI) layers was developed using top-down solution processing. Graphite was exfoliated using sonication assisted by polyaniline to produce a nanostructured, conductive graphene/polyaniline hybrid (GPn) in large quantities (>0.5 L of 6 wt% solution in a single laboratory-scale process). The GPn was coated on copper and exhibited excellent anticorrosion protection efficiencies of 46.6% and 68.4% under electrochemical polarization in 1 M sulfuric acid and 3.5 wt% sodium chloride solutions, chosen as chemical and seawater models, respectively. Impedance measurements were performed in the two corrosive solutions, with the variation in charge transfer resistance (R ct) over time indicating that the GPn acted as an efficient physical and chemical barrier preventing corrosive species from reaching the copper surface. The GPn-coated copper was composed of many PANI-coated graphene planes stacked parallel to the copper surface. PANI exhibits redox-based conductivity, which was facilitated by the high conductivity of graphene. Additionally, the GPn surface was found to be hydrophobic. These properties combined effectively to protect the copper metal against corrosion. We expect that the GPn can be further applied for developing smart anticorrosive coating layers capable of monitoring the status of metals.
Collapse
Affiliation(s)
- Saerona Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Thanh-Hai Le
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Chul Soon Park
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Geunsu Park
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Kyung Ho Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Semin Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Oh Seok Kwon
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Gyun Taek Lim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
| | - Hyeonseok Yoon
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
| |
Collapse
|
9
|
Le TH, Kim Y, Yoon H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers (Basel) 2017; 9:polym9040150. [PMID: 30970829 PMCID: PMC6432010 DOI: 10.3390/polym9040150] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 11/16/2022] Open
Abstract
Conducting polymers (CPs) have received much attention in both fundamental and practical studies because they have electrical and electrochemical properties similar to those of both traditional semiconductors and metals. CPs possess excellent characteristics such as mild synthesis and processing conditions, chemical and structural diversity, tunable conductivity, and structural flexibility. Advances in nanotechnology have allowed the fabrication of versatile CP nanomaterials with improved performance for various applications including electronics, optoelectronics, sensors, and energy devices. The aim of this review is to explore the conductivity mechanisms and electrical and electrochemical properties of CPs and to discuss the factors that significantly affect these properties. The size and morphology of the materials are also discussed as key parameters that affect their major properties. Finally, the latest trends in research on electrochemical capacitors and sensors are introduced through an in-depth discussion of the most remarkable studies reported since 2003.
Collapse
Affiliation(s)
- Thanh-Hai Le
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Yukyung Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| |
Collapse
|
10
|
Nguyen DN, Yoon H. Recent Advances in Nanostructured Conducting Polymers: from Synthesis to Practical Applications. Polymers (Basel) 2016; 8:E118. [PMID: 30979209 PMCID: PMC6432394 DOI: 10.3390/polym8040118] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/19/2016] [Accepted: 03/25/2016] [Indexed: 12/21/2022] Open
Abstract
Conducting polymers (CPs) have been widely studied to realize advanced technologies in various areas such as chemical and biosensors, catalysts, photovoltaic cells, batteries, supercapacitors, and others. In particular, hybridization of CPs with inorganic species has allowed the production of promising functional materials with improved performance in various applications. Consequently, many important studies on CPs have been carried out over the last decade, and numerous researchers remain attracted to CPs from a technological perspective. In this review, we provide a theoretical classification of fabrication techniques and a brief summary of the most recent developments in synthesis methods. We evaluate the efficacy and benefits of these methods for the preparation of pure CP nanomaterials and nanohybrids, presenting the newest trends from around the world with 205 references, most of which are from the last three years. Furthermore, we also evaluate the effects of various factors on the structures and properties of CP nanomaterials, citing a large variety of publications.
Collapse
Affiliation(s)
- Duong Nguyen Nguyen
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| |
Collapse
|
11
|
Lee Y, Choi H, Kim MS, Noh S, Ahn KJ, Im K, Kwon OS, Yoon H. Nanoparticle-Mediated Physical Exfoliation of Aqueous-Phase Graphene for Fabrication of Three-Dimensionally Structured Hybrid Electrodes. Sci Rep 2016; 6:19761. [PMID: 26813878 PMCID: PMC4728443 DOI: 10.1038/srep19761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/17/2015] [Indexed: 11/09/2022] Open
Abstract
Monodispersed polypyrrole (PPy) nanospheres were physically incorporated as guest species into stacked graphene layers without significant property degradation, thereby facilitating the formation of unique three-dimensional hybrid nanoarchitecture. The electrochemical properties of the graphene/particulate PPy (GPPy) nanohybrids were dependent on the sizes and contents of the PPy nanospheres. The nanohybrids exhibited optimum electrochemical performance in terms of redox activity, charge-transfer resistance, and specific capacitance at an 8:1 PPy/graphite (graphene precursor) weight ratio. The packing density of the alternately stacked nanohybrid structure varied with the nanosphere content, indicating the potential for high volumetric capacitance. The nanohybrids also exhibited good long-term cycling stability because of a structural synergy effect. Finally, fabricated nanohybrid-based flexible all–solid state capacitor cells exhibited good electrochemical performance in an acidic electrolyte with a maximum energy density of 8.4 Wh kg−1 or 1.9 Wh L−1 at a maximum power density of 3.2 kW kg−1 or 0.7 kW L−1; these performances were based on the mass or packing density of the electrode materials.
Collapse
Affiliation(s)
- Younghee Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Hojin Choi
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Min-Sik Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Seonmyeong Noh
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Ki-Jin Ahn
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Kyungun Im
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Oh Seok Kwon
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon 34141, South Korea
| | - Hyeonseok Yoon
- Alan G. MacDiarmid Energy Research Institute, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea.,Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| |
Collapse
|
12
|
Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 2016; 44:7484-539. [PMID: 26050756 DOI: 10.1039/c5cs00303b] [Citation(s) in RCA: 1030] [Impact Index Per Article: 128.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Electrolytes have been identified as some of the most influential components in the performance of electrochemical supercapacitors (ESs), which include: electrical double-layer capacitors, pseudocapacitors and hybrid supercapacitors. This paper reviews recent progress in the research and development of ES electrolytes. The electrolytes are classified into several categories, including: aqueous, organic, ionic liquids, solid-state or quasi-solid-state, as well as redox-active electrolytes. Effects of electrolyte properties on ES performance are discussed in detail. The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature. Interaction among the electrolytes, electro-active materials and inactive components (current collectors, binders, and separators) is discussed. The challenges in producing high-performing electrolytes are analyzed. Several possible research directions to overcome these challenges are proposed for future efforts, with the main aim of improving ESs' energy density without sacrificing existing advantages (e.g., a high power density and a long cycle-life) (507 references).
Collapse
Affiliation(s)
- Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Yida Deng
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China. and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Jinli Qiao
- School of Environmental Engineering, Donghua University, Shanghai, China
| | - Lei Zhang
- Energy, Mining & Environment, National Research Council of Canada, Vancouver, BC, Canada
| | - Jiujun Zhang
- Energy, Mining & Environment, National Research Council of Canada, Vancouver, BC, Canada
| |
Collapse
|
13
|
Yoo D, Lee JJ, Park C, Choi HH, Kim JH. N-type organic thermoelectric materials based on polyaniline doped with the aprotic ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate. RSC Adv 2016. [DOI: 10.1039/c6ra02334g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The thermopower performance of polyaniline doped with the considerably reliable ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate was investigated to determine its potential as an alternative to fossil fuels.
Collapse
Affiliation(s)
- Dohyuk Yoo
- Department of Chemical and Biomolecular Engineering
- Yonsei University
- Seoul 120-749
- Republic of Korea
| | - Jung Joon Lee
- Department of Chemical and Biomolecular Engineering
- Yonsei University
- Seoul 120-749
- Republic of Korea
| | - Chanil Park
- Department of Chemical and Biomolecular Engineering
- Yonsei University
- Seoul 120-749
- Republic of Korea
| | - Hyang Hee Choi
- Institute of Nanoscience and Nanotechnology
- Yonsei University
- Seoul 120-749
- Republic of Korea
| | - Jung-Hyun Kim
- Department of Chemical and Biomolecular Engineering
- Yonsei University
- Seoul 120-749
- Republic of Korea
| |
Collapse
|
14
|
Kim E. Effects of Binary Doping on Chiroptical, Electrochemical, and Morphological Properties of Chiral Polyaniline. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2015. [DOI: 10.5012/jkcs.2015.59.5.423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Ahn KJ, Lee Y, Choi H, Kim MS, Im K, Noh S, Yoon H. Surfactant-Templated Synthesis of Polypyrrole Nanocages as Redox Mediators for Efficient Energy Storage. Sci Rep 2015; 5:14097. [PMID: 26373685 PMCID: PMC4571653 DOI: 10.1038/srep14097] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/18/2015] [Indexed: 11/29/2022] Open
Abstract
Preparation of conducting-polymer hollow nanoparticles with different diameters was accomplished by surfactant templating. An anionic surfactant, namely sodium dodecylbenzenesulfonate, formed vesicles to template with the pyrrole monomer. Subsequent chemical oxidative polymerization of the monomer yielded spherical polypyrrole (PPy) nanoparticles with hollow interiors. The diameter of the hollow nanoparticles was easily controlled by adjusting the concentration of the surfactant. Subsequently, the size-dependent electrochemical properties of the nanoparticles, including redox properties and charge/discharge behavior, were examined. By virtue of the structural advantages, the specific capacitance (max. 326 F g−1) of PPy hollow nanoparticles was approximately twice as large as that of solid PPy nanospheres. The hollow PPy nanostructure can easily be used as a conductive substrate for the preparation of metal/polymer nanohybrids through chemical and electrochemical deposition. Two different pseudocapacitive metal-oxide clusters were readily deposited on the inner and outer surfaces of the hollow nanoparticles, which resulted in an increase in the specific capacitance to 390 F g−1. In addition, the hollow nanoparticles acted as a nanocage to prevent metal ion leaching during charge/discharge, thus allowing an excellent capacitance retention of ca. 86%, even following 10,000 cycles.
Collapse
Affiliation(s)
- Ki-Jin Ahn
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
| | - Younghee Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
| | - Hojin Choi
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
| | - Min-Sik Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
| | - Kyungun Im
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
| | - Seonmyeong Noh
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
| | - Hyeonseok Yoon
- Alan G. MacDiarmid Energy Research Institute, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea.,Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
| |
Collapse
|
16
|
Choi H, Yoon H. Nanostructured Electrode Materials for Electrochemical Capacitor Applications. NANOMATERIALS 2015; 5:906-936. [PMID: 28347044 PMCID: PMC5312909 DOI: 10.3390/nano5020906] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/27/2015] [Indexed: 11/18/2022]
Abstract
The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013). Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead.
Collapse
Affiliation(s)
- Hojin Choi
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea.
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea.
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea.
| |
Collapse
|
17
|
Lee JE, Lee Y, Ahn KJ, Huh J, Shim HW, Sampath G, Im WB, Huh Y, Yoon H. Role of co-vapors in vapor deposition polymerization. Sci Rep 2015; 5:8420. [PMID: 25673422 PMCID: PMC5389134 DOI: 10.1038/srep08420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/19/2015] [Indexed: 11/10/2022] Open
Abstract
Polypyrrole (PPy)/cellulose (PPCL) composite papers were fabricated by vapor phase polymerization. Importantly, the vapor-phase deposition of PPy onto cellulose was assisted by employing different co-vapors namely methanol, ethanol, benzene, water, toluene and hexane, in addition to pyrrole. The resulting PPCL papers possessed high mechanical flexibility, large surface-to-volume ratio, and good redox properties. Their main properties were highly influenced by the nature of the co-vaporized solvent. The morphology and oxidation level of deposited PPy were tuned by employing co-vapors during the polymerization, which in turn led to change in the electrochemical properties of the PPCL papers. When methanol and ethanol were used as co-vapors, the conductivities of PPCL papers were found to have improved five times, which was likely due to the enhanced orientation of PPy chain by the polar co-vapors with high dipole moment. The specific capacitance of PPCL papers obtained using benzene, toluene, water and hexane co-vapors was higher than those of the others, which is attributed to the enlarged effective surface area of the electrode material. The results indicate that the judicious choice and combination of co-vapors in vapor-deposition polymerization (VDP) offers the possibility of tuning the morphological, electrical, and electrochemical properties of deposited conducting polymers.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
| | - Younghee Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
| | - Ki-Jin Ahn
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
| | - Jinyoung Huh
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
| | - Hyeon Woo Shim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
| | - Gayathri Sampath
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
| | - Won Bin Im
- School of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
| | - Yang–Il Huh
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
| | - Hyeonseok Yoon
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
| |
Collapse
|