1
|
Khrapova KO, Volkov PA, Telezhkin AA, Albanov AI, Chupakhin ON, Trofimov BA. Catalyst- and solvent-free regiospecific S NHAr phosphinylation of pyridines with H-phosphinates mediated by benzoylphenylacetylene. Org Biomol Chem 2024; 22:5419-5427. [PMID: 38884371 DOI: 10.1039/d4ob00661e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Pyridines undergo a facile SNHAr phosphinylation with H-phosphinates under catalyst- and solvent-free conditions (50-55 °C) in the presence of benzoylphenylacetylene to afford 4-phosphinylpyridines in up to 68% yield. In this reaction, benzoylphenylacetylene activates the pyridine ring by the formation of a 1,3(4)-dipolar complex, deprotonates H-phosphinates to generate P-centered anions and finally acts as an oxidizer, being eliminated from an intermediate ion pair. Terminal electron-deficient acetylenes (methyl propiolate and benzoylacetylene) are inefficient as mediators in the above SNHAr process.
Collapse
Affiliation(s)
- Kseniya O Khrapova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation.
| | - Pavel A Volkov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation.
| | - Anton A Telezhkin
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation.
| | - Alexander I Albanov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation.
| | - Oleg N Chupakhin
- I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22/20 S. Kovalevskoi/Akademicheskaya St., Ekaterinburg 620219, Russian Federation
| | - Boris A Trofimov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation.
| |
Collapse
|
2
|
Wang J, Xiao J, Tang ZL, Lan DH, Han LB. Reductive Coupling of P(O)-H Compounds and Aldehydes for the General Synthesis of Phosphines and Phosphine Oxides. J Org Chem 2024; 89:5109-5117. [PMID: 38483841 DOI: 10.1021/acs.joc.3c02678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A novel strategy for the selective construction of a C(sp3)-P(III) or -P(V) bond from >P(O)-H compounds and aldehydes is disclosed. By using the H3PO3/I2 system, various secondary phosphine oxides could react with both aromatic and aliphatic aldehydes to afford valuable phosphines (isolated as sulfides) and phosphine oxides in good yields. This method features a wide substrate scope and simple reaction conditions and avoids the use of toxic halides and metals.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jing Xiao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zi-Long Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Dong-Hui Lan
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, Hunan, China
| | - Li-Biao Han
- Zhejiang Yangfan New Materials Company, Ltd., Shangyu, Zhejiang 312369, China
| |
Collapse
|
3
|
Huszár B, Szolga R, Bősze S, Oláhné Szabó R, Simon A, Karaghiosoff K, Czugler M, Drahos L, Keglevich G. Synthesis and Anticancer Activity of Phosphinoylated and Phosphonoylated N-Heterocycles Obtained by the Microwave-Assisted Palladium Acetate-Catalyzed Hirao Reaction. Chemistry 2023; 29:e202302465. [PMID: 37711077 DOI: 10.1002/chem.202302465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
A literature survey showed that different derivatives with the 9-phenyl-9H-carbazole or the dihydroindoline scaffold may be of biological activity including cytotoxic effect. Driven by this experience, P-functionalized derivatives of these N-heterocycles were synthesized. Three N-heterocycles, 9-(4-bromophenyl)-9H-carbazole, 3-bromo-9-phenyl-9H-carbazole and 1-(5-bromoindolin-1-yl)ethan-1-one, were coupled with dialkyl phosphites and diarylphosphine oxides using Pd(OAc)2 (10 %) as the catalyst precursor and triethylamine as the base in ethanol under microwave irradiation. The excess of the Y2 P(O)H reagent (Y=alkoxy, aryl) (30 %) served as the P-ligand in its trivalent tautomeric form (Y2 POH), hence there was no need for the usual P-ligands meaning cost and environmental burden. Hence, the presented method is a "green" approach that proved to be more efficient than the preparation by the traditional method. The products, dialkyl phosphonates and tertiary phosphine oxides obtained in 58-84 % yields were characterized, one of them also by single crystal X-ray analysis, and were subjected to in vitro biological activity evaluation. A (carbazol)yl-phenylphosphonate, an N-phenyl-(carbazol)yl-phosphonate, a (carbazol)yl-phenylphosphine oxide and an N-phenyl-(carbazol)ylphosphine oxide revealed a significant cytotoxic activity on A549 human non-small-cell lung carcinoma and MonoMac-6 acute monocytic leukemia cancer cells. The cytotoxic effect was significant as compared to that of the reference compounds.
Collapse
Affiliation(s)
- Bianka Huszár
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1521, Budapest, Hungary
| | - Renáta Szolga
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1521, Budapest, Hungary
| | - Szilvia Bősze
- Eötvös Loránd Research Network (ELKH), Research Group of Peptide Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Rita Oláhné Szabó
- Eötvös Loránd Research Network (ELKH), Research Group of Peptide Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary
- Department of Genetics, Cell-and Immunobiology, Semmelweis University, 1089, Budapest, Nagyvárad tér 4, Hungary
| | - András Simon
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1521, Budapest, Hungary
| | - Konstantin Karaghiosoff
- Department Chemie, Ludwig-Maximilians-Universitat München, 81377, München, Butenandtstr. 5-13, Germany
| | - Mátyás Czugler
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1521, Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1521, Budapest, Hungary
| |
Collapse
|
4
|
Aleksandrova EA, Ponomareva NA, Rudakov AS, Derkacheva OY, Serebryakov EB, Trishin YG. Synthesis of Bis-α-hydroxyphosphine Oxides on the Salicyl Aldehyde Platform. RUSS J GEN CHEM+ 2023. [DOI: 10.1134/s107036322301005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
5
|
Synthesis of alkyl-H-phosphinic acid alkyl esters from red phosphorus and alkyl bromides. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Pd-Catalyzed Hirao P–C Coupling Reactions with Dihalogenobenzenes without the Usual P-Ligands under MW Conditions. Catalysts 2022. [DOI: 10.3390/catal12101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A literature survey of the P–C coupling reactions of 1,4-and 1,2-bromo-iodobenzenes with diphenylphosphine oxide or diethyl phosphite under different conditions comprising Pd-, Ni-, or Cu-catalysis revealed that, depending on the experimental details, the yields of the corresponding >P(O)-bromobenzenes were rather diverse and occasionally contradicting. Therefore, the reactivity of a series of 1,4-, 1,3- and 1,2-dibromo- and bromo-iodobenzenes with the above mentioned P-reagents was evaluated under the “P-ligand-free” microwave (MW)-assisted conditions elaborated by us. Starting from dibromobenzenes and iodo-bromoarenes, practical and competent syntheses were developed for phosphonoyl- and phosphinoyl-bromoarenes, and, in a few instances, for arenes with two P-functions. The cheaper dibromobenzenes may be substituted for the bromo-iodo derivatives. In all, 12 products were prepared in yields of 45–82%. They were fully characterized. The method described does not require the use of traditional P-ligands.
Collapse
|
7
|
Huszár B, Mucsi Z, Szolga R, Keglevich G. New data on the Hirao reaction; The use of Cu(II) salts as the catalyst precursor under microwave irradiation in the absence of added P-ligands. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Ábrányi-Balogh P, Harsági N, Drahos L, Keglevich G. A Study on the Direct Esterification of Monoalkylphosphates and Dialkylphosphates; The Conversion of the Latter Species to Trialkylphosphates by Alkylating Esterification. Molecules 2022; 27:molecules27154674. [PMID: 35897850 PMCID: PMC9331942 DOI: 10.3390/molecules27154674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
The microwave (MW)-assisted direct esterification of certain P-acids is a green method. Quantum chemical calculations revealed that the activation enthalpy (ΔH#) for the exothermic monoalkylphosphate → dialkylphosphate transformation was on the average 156.6 kJ mol−1, while ΔH# for the dialkylphosphate → trialkylphosphate conversion was somewhat higher, 171.2 kJ mol−1, and the energetics of the elemental steps of this esterification was less favorable. The direct monoesterification may be performed on MW irradiation in the presence of a suitable ionic liquid additive. However, the second step, with the less favorable energetics as a whole, could not be promoted by MWs. Hence, dialkylphosphates had to be converted to triesters by another method that was alkylation. In this way, it was also possible to synthesize triesters with different alkyl groups. Eventually a green, P-chloride free MW-promoted two-step method was elaborated for the synthesis of phosphate triesters.
Collapse
Affiliation(s)
- Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, 1117 Budapest, Hungary;
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
| | - Nikoletta Harsági
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, 1117 Budapest, Hungary;
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
- Correspondence: ; Tel.: +36-1-463-1111 (ext. 5883)
| |
Collapse
|
9
|
Rahman M, Ghosh S, Bhattacherjee D, Zyryanov GV, Bagdi AK, Hajra A. Recent Advances in Microwave‐assisted Cross‐Coupling Reactions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Matiur Rahman
- Ural Federal University named after the first President of Russia B N Yeltsin: Ural'skij federal'nyj universitet imeni pervogo Prezidenta Rossii B N El'cina Department of Organic and Biomolecular Chemistry RUSSIAN FEDERATION
| | | | - Dhananjay Bhattacherjee
- Ural Federal University named after the first President of Russia B N Yeltsin: Ural'skij federal'nyj universitet imeni pervogo Prezidenta Rossii B N El'cina Department of Organic and Biomolecular Chemistry RUSSIAN FEDERATION
| | - Grigory V. Zyryanov
- Ural Federal University named after the first President of Russia B N Yeltsin: Ural'skij federal'nyj universitet imeni pervogo Prezidenta Rossii B N El'cina Department of Organic and Biomolecular Chemistry RUSSIAN FEDERATION
| | | | - Alakananda Hajra
- Visva-Bharati Chemistry Santiniketan Road 731235 Santiniketan, Bolpur INDIA
| |
Collapse
|
10
|
Keglevich G, Harsági N, Varga PR, Huszár B, Henyecz R, Kiss NZ, Mucsi Z, Bagi P. Newer developments in the green synthesis of tertiary phosphine oxides, phosphinates, phosphonates and their derivatives. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.1990924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Nikoletta Harsági
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Petra R. Varga
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Bianka Huszár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Réka Henyecz
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Nóra Z. Kiss
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zoltán Mucsi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Péter Bagi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
11
|
Huszár B, Henyecz R, Mucsi Z, Keglevich G. Microwave assisted P–C coupling reactions without directly added P-ligands. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.2011884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Bianka Huszár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Réka Henyecz
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zoltán Mucsi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
12
|
|
13
|
McErlain H, Riley LM, Sutherland A. Palladium-Catalyzed C-P Bond-Forming Reactions of Aryl Nonaflates Accelerated by Iodide. J Org Chem 2021; 86:17036-17049. [PMID: 34726917 PMCID: PMC8650017 DOI: 10.1021/acs.joc.1c02172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 11/28/2022]
Abstract
An iodide-accelerated, palladium-catalyzed C-P bond-forming reaction of aryl nonaflates is described. The protocol was optimized for the synthesis of aryl phosphine oxides and was found to be tolerant of a wide range of aryl nonaflates. The general nature of this transformation was established with coupling to other P(O)H compounds for the synthesis of aryl phosphonates and an aryl phosphinate. The straightforward synthesis of stable, isolable aryl nonaflates, in combination with the rapid C-P bond-forming reaction allows facile preparation of aryl phosphorus target compounds from readily available phenol starting materials. The synthetic utility of this general strategy was demonstrated with the efficient preparation of an organic light-emitting diode (OLED) material and a phosphonophenylalanine mimic.
Collapse
Affiliation(s)
- Holly McErlain
- School of Chemistry, The
Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Leanne M. Riley
- School of Chemistry, The
Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Andrew Sutherland
- School of Chemistry, The
Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
14
|
Microwave-assisted synthesis of benzo[b]phosphole oxide derivatives by oxidative addition of acetylenes and secondary phosphine oxides or alkyl phenyl-H-phosphinates. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Chen Y, Zhang S, Xue Y, Mo L, Zhang Z. Palladium anchored on a covalent organic framework as a heterogeneous catalyst for phosphorylation of aryl bromides. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu‐Xuan Chen
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang China
| | - Shuo Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang China
| | - Yu‐Jie Xue
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang China
| | - Li‐Ping Mo
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang China
| | - Zhan‐Hui Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang China
| |
Collapse
|
16
|
MW-Promoted Cu(I)-Catalyzed P–C Coupling Reactions without the Addition of Conventional Ligands; an Experimental and a Theoretical Study. Catalysts 2021. [DOI: 10.3390/catal11080933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An experimental and a theoretical study on the so far less investigated Cu(I) salt-catalyzed Hirao reaction of iodobenzene and diarylphosphine oxides (DAPOs) revealed that Cu(I)Br or Cu(I)Cl is the most efficient catalyst under microwave irradiation. The optimum conditions included 165 °C and a 1:2 molar ratio for DAPOs and triethylamine. The possible ligations of Cu(I) were studied in detail. Bisligated P---Cu(I)---P (A), P---Cu(I)---N (B) and N---Cu(I)---N (C) complexes were considered as the catalysts. Calculations on the mechanism suggested that complexes A and B may catalyze the P–C coupling, but the latter one is more advantageous both according to experiments and calculations pointing out the Cu(I) → Cu(III) conversion in the oxidative addition step. The P–C coupling cannot take place with PhBr, as in this case, the catalyst complex cannot be regenerated.
Collapse
|
17
|
Jójárt R, Tahaei SAS, Trungel-Nagy P, Kele Z, Minorics R, Paragi G, Zupkó I, Mernyák E. Synthesis and evaluation of anticancer activities of 2- or 4-substituted 3-( N-benzyltriazolylmethyl)-13α-oestrone derivatives. J Enzyme Inhib Med Chem 2021; 36:58-67. [PMID: 33121276 PMCID: PMC7598997 DOI: 10.1080/14756366.2020.1838500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
2- or 4-Substituted 3-N-benzyltriazolylmethyl-13α-oestrone derivatives were synthesised via bromination of ring A and subsequent microwave-assisted, Pd-catalysed C(sp2)–P couplings. The antiproliferative activities of the newly synthesised brominated and phosphonated compounds against a panel of human cancer cell lines (A2780, MCF-7, MDA-MB 231) were investigated by means of MTT assays. The most potent compound, the 3-N-benzyltriazolylmethyl-4-bromo-13α-oestrone derivative exerted substantial selective cell growth-inhibitory activity against A2780 cell line with a submicromolar IC50 value. Computational calculations reveal strong interactions of the 4-bromo derivative with both colchicine and taxoid binding sites of tubulin. Disturbance of tubulin function has been confirmed by photometric polymerisation assay.
Collapse
Affiliation(s)
- Rebeka Jójárt
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | | | | | - Zoltán Kele
- Department of Medicinal Chemistry, University of Szeged, Szeged, Hungary
| | - Renáta Minorics
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Gábor Paragi
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Szeged, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
18
|
|
19
|
Keglevich G. Microwaves as "Co-Catalysts" or as Substitute for Catalysts in Organophosphorus Chemistry. Molecules 2021; 26:1196. [PMID: 33672361 PMCID: PMC7926777 DOI: 10.3390/molecules26041196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this review is to summarize the importance of microwave (MW) irradiation as a kind of catalyst in organophosphorus chemistry. Slow or reluctant reactions, such as the Diels-Alder cycloaddition or an inverse-Wittig type reaction, may be performed efficiently under MW irradiation. The direct esterification of phosphinic and phosphonic acids, which is practically impossible on conventional heating, may be realized under MW conditions. Ionic liquid additives may promote further esterifications. The opposite reaction, the hydrolysis of P-esters, has also relevance among the MW-assisted transformations. A typical case is when the catalysts are substituted by MWs, which is exemplified by the reduction of phosphine oxides, and by the Kabachnik-Fields condensation affording α-aminophosphonic derivatives. Finally, the Hirao P-C coupling reaction may serve as an example, when the catalyst may be simplified under MW conditions. All of the examples discussed fulfill the expectations of green chemistry.
Collapse
Affiliation(s)
- György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| |
Collapse
|
20
|
Focusing on the Catal. of the Pd- and Ni-Catalyzed Hirao Reactions. Molecules 2020; 25:molecules25173897. [PMID: 32859095 PMCID: PMC7503744 DOI: 10.3390/molecules25173897] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
The Hirao reaction involving the phosphinoylation or phosphonation of aryl halides by >P(O)H reagents is a P–C bond forming transformation belonging to the recently very hot topic of cross-couplings. The Pd- or Ni-catalyzed variations take place via the usual cycle including oxidative addition, ligand exchange, and reductive elimination. However, according to the literature, the nature of the transition metal catalysts is not unambiguous. In this feature article, the catalysts described for the Pd(OAc)2-promoted cases are summarized, and it is concluded that the “(HOY2P)2Pd(0)” species (Y = aryl, alkoxy) is the real catalyst. In our model, the excess of the >P(O)H reagent served as the P-ligand. During the less studied Ni(II)-catalyzed instances the “(HOY2P)(−OY2P)Ni(II)Cl−” form was found to enter the catalytic cycle. The newest conclusions involving the exact structure of the catalysts, and the mechanism for their formation explored by us were supported by our earlier experimental data and theoretical calculations.
Collapse
|
21
|
Abdou MM. Synopsis of recent synthetic methods and biological applications of phosphinic acid derivatives. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Keglevich G, Henyecz R, Mucsi Z. Experimental and Theoretical Study on the "2,2'-Bipiridyl-Ni-Catalyzed" Hirao Reaction of >P(O)H Reagents and Halobenzenes: A Ni(0) → Ni(II) or a Ni(II) → Ni(IV) Mechanism? J Org Chem 2020; 85:14486-14495. [PMID: 32407093 PMCID: PMC7684577 DOI: 10.1021/acs.joc.0c00804] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
It was found by us that the P–C
coupling reaction of >P(O)H
reagents with PhX (X = I and Br) in the presence of NiCl2/Zn as the precursors for the assumed Ni(0) complexant together with
2,2′-bipyridine as the ligand took place only with PhI at 50/70
°C. M06-2X/6-31G(d,p)//PCM(MeCN) calculations
for the reaction of Ph2P(O)H and PhX revealed a favorable
energetics only for the loss of iodide following the oxidative addition
of PhI on the Ni(0) atom. However, the assumed transition states with
Ni(II) formed after P-ligand uptake and deprotonation could not undergo
reductive elimination meaning a “dead-end route”. Hence,
it was assumed that the initial complexation of the remaining Ni2+ ions with 2,2′-bipyridine may move the P–C
coupling forward via a Ni(II) → Ni(IV) transition. This route
was also confirmed by calculations, and this mechanism was justified
by preparative experiments carried out using NiCl2/bipyridine
in the absence of Zn. Hence, the generally accepted Ni(0) →
Ni(II) route was refuted by us, confirming the generality of the Ni(II)
→ N(IV) protocol, either in the presence of bipyridine, or
using the excess of the >P(O)H reagent as the P-ligand.
The results of the calculations on the complex forming ability of
Ni(0) and Ni(II) with 2,2′-bipyridine or the P-reagents were in accord with our mechanistic proposition.
Collapse
Affiliation(s)
- György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Réka Henyecz
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Zoltán Mucsi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| |
Collapse
|
23
|
Kolodiazhnyi OI. Stereochemistry, mechanisms and applications of electrophilic reactions of organophosphorus compounds. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Badgurjar D, Shan B, Nayak A, Wu L, Chitta R, Meyer TJ. Electron-Withdrawing Boron Dipyrromethene Dyes As Visible Light Absorber/Sensitizers on Semiconductor Oxide Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7768-7776. [PMID: 31961645 DOI: 10.1021/acsami.9b20167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The synthesis, characterization, and electrochemical and photophysical properties of the phosphonate-derivatized carbazole (CBZ) and boron dipyrromethene (BODIPY) chromophores in the dyes, BODIPY(CBZ)2PO3H2 (8) and BODIPY(Tol)2PO3H2 (7), are described. The oxide-bound dyes have been explored as light absorbers in dye-sensitized photoelectrosynthesis cell (DSPEC) applications. The BODIPY-CBZ phosphonate ester (6) features a broad, intense UV-visible absorption spectrum with absorptions at 297 and 650 nm that arise from mixed transitions at the CBZ and BODIPY units. Electrochemical measurements on BODIPY(CBZ)2Br (4) in 0.1 M [nBu4N][PF6] in dichloromethane, vs normal hydrogen electrode (NHE), reveal reversible oxidations at 1.19 and 1.41 V and a reversible reduction at -0.59 V. On indium tin oxide (ITO) and TiO2, a reversible one-electron oxidation appears for 7 at 0.86 and 0.90 V vs NHE in dichloromethane, respectively, which demonstrates the redox stability on metal oxide surfaces. The results of nanosecond transient absorption measurements on SnO2/TiO2 electrodes provide direct evidence for excited-state electron injection into the conduction band of TiO2 following 590 nm excitation. A longer lifetime for 8+ compared to 7+ is consistent with extensive intramolecular charge separation between the CBZ and BODIPY units on the surface. Photoelectrochemical studies on 8 on a SnO2/TiO2 photoanode resulted in sustained photocurrents with current maxima of ∼200 μA/cm2 with hydroquinone added as a reductant under 1 sun (AM1.5 100 mW·cm-2) illumination at pH 4.5 in 0.1 M acetate buffer and 0.4 M LiClO4. On mixed SnO2/TiO2 electrode surfaces, with the added catalyst [Ru(Mebimpy)((4,4'-(OH)2PO-CH2)2bpy)(OH2)]2+ and chromophores 7 and 8, addition of 0.1 M benzyl alcohol resulted in sustained photocurrents of 12 and 35 μA/cm2, consistent with oxidation to benzaldehyde.
Collapse
Affiliation(s)
- Deepak Badgurjar
- Department of Chemistry, School of Chemical Sciences & Pharmacy , Central University of Rajasthan , Kishangarh, Dist. Ajmer , Rajasthan 305817 , India
| | - Bing Shan
- Department of Chemistry , University of North Carolina at Chapel Hill , CB3290 , Chapel Hill , North Carolina 27599 , United States
| | - Animesh Nayak
- Department of Chemistry , University of North Carolina at Chapel Hill , CB3290 , Chapel Hill , North Carolina 27599 , United States
| | - Lei Wu
- Department of Chemistry , University of North Carolina at Chapel Hill , CB3290 , Chapel Hill , North Carolina 27599 , United States
| | - Raghu Chitta
- Department of Chemistry, School of Chemical Sciences & Pharmacy , Central University of Rajasthan , Kishangarh, Dist. Ajmer , Rajasthan 305817 , India
| | - Thomas J Meyer
- Department of Chemistry , University of North Carolina at Chapel Hill , CB3290 , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
25
|
Abstract
This review is devoted to the theoretic and synthetic aspects of asymmetric electrophilic substitution reactions at the stereogenic phosphorus center. The stereochemistry and mechanisms of electrophilic reactions are discussed—the substitution, addition and addition-elimination of many important reactions. The reactions of bimolecular electrophilic substitution SE2(P) proceed stereospecifically with the retention of absolute configuration at the phosphorus center, in contrast to the reactions of bimolecular nucleophilic substitution SN2(P), proceeding with inversion of absolute configuration. This conclusion was made based on stereochemical analysis of a wide range of trivalent phosphorus reactions with typical electrophiles and investigation of examples of a sizeable number of diverse compounds. The combination of stereospecific electrophilic reactions and stereoselective nucleophilic reactions is useful and promising for the further development of organophosphorus chemistry. The study of phosphoryl group transfer reactions is important for biological and molecular chemistry, as well as in studying mechanisms of chemical processes involving organophosphorus compounds. New versions of asymmetric electrophilic reactions applicable for the synthesis of enantiopure P-chiral secondary and tertiary phosphines are discussed.
Collapse
|
26
|
Mohd A, Anitha T, Reddy KR, Wencel-Delord J, Colobert F. P-Stereogenic Phosphonates via Dynamic Kinetic Resolution: A Route towards Enantiopure Tertiary Phosphine Oxides. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Aabid Mohd
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042); Université de Strasbourg / Université de haute Alsace, ECPM; 25 Rue Becquerel 67087 Strasbourg France
| | - Thippani Anitha
- Catalysis and Fine chemicals Division; CSIR-Indian Institute of Chemical Technology; Tarnaka -500 007 Hyderabad Telangana State India
| | - Kallu Rajender Reddy
- Catalysis and Fine chemicals Division; CSIR-Indian Institute of Chemical Technology; Tarnaka -500 007 Hyderabad Telangana State India
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042); Université de Strasbourg / Université de haute Alsace, ECPM; 25 Rue Becquerel 67087 Strasbourg France
| | - Françoise Colobert
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042); Université de Strasbourg / Université de haute Alsace, ECPM; 25 Rue Becquerel 67087 Strasbourg France
| |
Collapse
|
27
|
Henyecz R, Mucsi Z, Keglevich G. A surprising mechanism lacking the Ni(0) state during the Ni(II)-catalyzed P–C cross-coupling reaction performed in the absence of a reducing agent – An experimental and a theoretical study. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2019-1004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The Hirao reaction, i.e. the P–C coupling between a bromoarene and a >P(O)H reagent performed in most cases in the presence of a Pd(0) complex incorporating a P-ligand may also be carried out applying a Ni(II) catalyst precursor with or without Zn or Mg as the reducing agent. The Ni catalysts may include P- or N-ligands. B3LYP/6-31G(d,p)//PCM(MeCN) quantum chemical calculations suggested that the mechanism of the NiX2 catalyzed (X=Cl or Br) P–C couplings performed in the absence of a reducing agent, and in the excess of the >P(O)H reagent serving as the P-ligand (via its tautomeric >POH form) is completely different from that of the Pd(OAc)2 promoted version, as no reduction of the Ni(II) occurs. In the two variations mentioned, the active catalyst is the dehydrobrominated species derived from primary complex [(HO)Y2P]2Ni(II)Br2, and the [(HO)Y2P]2Pd(0) complex itself, respectively. Both species undergo temporary oxidation (to “Ni(IV)” and “Pd(II)”, respectively) in the catalytic cycle. During the catalysis with “P2Ni(II)X2”, one of the P-ligands serves the >P(O)H function of the ArP(O)H < product. The consequence of this difference is that in the Ni(II)-catalyzed case, somewhat less >P(O)H-species is needed than in the Pd(0)-promoted instance. Applying 10 % of the Pd(OAc)2 or NiX2 precursor, the optimum quantity of the P-reagent is 1.3 equivalent and, in the first approach, 1.1 equivalent, respectively. Preparative experiments justified the new mechanism explored. The ligation of Ni(II) was also investigated by theoretical calculations. It was proved that the bis-complexation is the most favorable energetically as compared to the mono-, tri- and tetra-ligation.
Collapse
Affiliation(s)
- Réka Henyecz
- Department of Organic Chemistry and Technology , Budapest University of Technology and Economics , 1521 Budapest , Hungary
| | - Zoltán Mucsi
- Department of Organic Chemistry and Technology , Budapest University of Technology and Economics , 1521 Budapest , Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology , Budapest University of Technology and Economics , 1521 Budapest , Hungary
| |
Collapse
|
28
|
Alexandrova EА, Lotsman KА, Lyssenko KА, Trishin YG. Synthesis of novel N,O-macrocyclic ligands, functionalized by phosphine oxide groups. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Henyecz R, Oroszy R, Keglevich G. Microwave-Assisted Hirao Reaction of Heteroaryl Bromides and >P(O)H Reagents Using Pd(OAc)2 as the Catalyst Precursor in the Absence of Added P-Ligands. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190621114915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bromopyridines, bromotiophenes and 3-bromofuran were reacted with diphenylphosphine oxide or diethyl phosphite under microwave irradiation using Pd(OAc)2 as the catalyst precursor together with some excess of the >P(O)H reagent. Hence, there was no need for the usual mono- and bidentate P-ligands. The >P(O)-functionalized heterocycles were obtained in variable (55-95%) yields. The results of our “green” protocol were in most cases better than those of the literature methods.
Collapse
Affiliation(s)
- Réka Henyecz
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Rafaella Oroszy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| |
Collapse
|
30
|
Abdou MM, El-Saeed RA. Potential chemical transformation of phosphinic acid derivatives and their applications in the synthesis of drugs. Bioorg Chem 2019; 90:103039. [PMID: 31220667 DOI: 10.1016/j.bioorg.2019.103039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 11/29/2022]
Abstract
The chemical transformation of phosphinic acid is a well-considered mature area of research on account of the historical significant reactions such as Kabachnik-Fields, Mannich, Arbuzov, Michaelis-Becker, etc. Considerable advances have been made over last years especially in metal-catalyzed, free-radical processes and asymmetric synthesis using catalytic enantioselective. As a result, the aim of this synopsis is to make the reader familiar with advances in the approaches of phosphinic acids toward the synthesis of highly functionalized and valuable buildings blocks. Another purpose of this survey is to provide the current status of the applications of phosphinic acids in the synthesis of drugs.
Collapse
Affiliation(s)
- Moaz M Abdou
- Egyptian Petroleum Research Institute, Nasr City, P.O. 11727, Cairo, Egypt; Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK.
| | - Rasha A El-Saeed
- Department of Chemistry, Faculty of Science, Mansoura University, ET-35516 Mansoura, Egypt
| |
Collapse
|
31
|
Keglevich G, Kiss NZ, Bálint E, Henyecz R, Grün A, Mucsi Z. Microwave irradiation and catalysis in organophosphorus chemistry. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2018.1521406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Nóra Zsuzsa Kiss
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Erika Bálint
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Réka Henyecz
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Alajos Grün
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zoltán Mucsi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
32
|
Henyecz R. Microwave-assisted synthesis of phosphonic and phosphinic esters and phosphine oxides by the Hirao reaction. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2018.1544983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Réka Henyecz
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
33
|
Application of the Microwave Technique in Continuous Flow Processing of Organophosphorus Chemical Reactions. MATERIALS 2019; 12:ma12050788. [PMID: 30866480 PMCID: PMC6427270 DOI: 10.3390/ma12050788] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/22/2022]
Abstract
The microwave (MW) technique is an efficient tool in the realization of organic reactions, as well as in the analytical field and in the food industry. The continuous flow approach is of special interest as a promising way to scale-up MW-assisted syntheses. Besides summarizing the batch precedents, this review focuses on the utilization of the MW technique in the continuous-flow realization of organophosphorus transformations. The advantages of the continuous flow technique against the batch accomplishment are also shown. A few materials chemistry-related applications are also mentioned.
Collapse
|
34
|
Keglevich G, Kiss NZ, Henyecz R, Mucsi Z. Microwave irradiation and catalysis in organophosphorus reactions. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-0501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Abstract
The usual advantage of microwave (MW) assistance is making organic reactions faster and more efficient. In this article we present reaction types from organophosphorus chemistry, when MW-assisted transformations (e.g. the direct esterification and alkylating esterification of phosphinic acids) may be promoted by suitable catalysts, or vice versa, when a catalytic reaction is enhanced by MW irradiation (e.g. the Arbuzov reaction of aryl halides), and when catalysts may be omitted or simplified under MW irradiation as shown by the alkylation of active methylene containing P=O substrates/the Kabachnik–Fields reaction/deoxygenation of phosphine oxides, and the Hirao reaction, respectively.
Collapse
Affiliation(s)
- György Keglevich
- Department of Organic Chemistry and Technology , Budapest University of Technology and Economics , 1521 Budapest , Hungary
| | - Nóra Zsuzsa Kiss
- Department of Organic Chemistry and Technology , Budapest University of Technology and Economics , 1521 Budapest , Hungary
| | - Réka Henyecz
- Department of Organic Chemistry and Technology , Budapest University of Technology and Economics , 1521 Budapest , Hungary
| | - Zoltán Mucsi
- Department of Organic Chemistry and Technology , Budapest University of Technology and Economics , 1521 Budapest , Hungary
| |
Collapse
|
35
|
Ghasemzadeh MS, Akhlaghinia B. C–P bond construction catalyzed by NiII immobilized on aminated Fe3O4@TiO2 yolk–shell NPs functionalized by (3-glycidyloxypropyl)trimethoxysilane (Fe3O4@TiO2 YS-GLYMO-UNNiII) in green media. NEW J CHEM 2019. [DOI: 10.1039/c9nj00352e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient, versatile and novel method for the C–P cross-coupling reaction with a high yield of products using Fe3O4@TiO2YS-GLYMO-UNNiII as a magnetic nanostructured catalyst in the presence of WERSA was reported.
Collapse
Affiliation(s)
- Maryam Sadat Ghasemzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad
- Mashhad 9177948974
- Iran
| | - Batool Akhlaghinia
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad
- Mashhad 9177948974
- Iran
| |
Collapse
|
36
|
Henyecz R, Keglevich G. New Developments on the Hirao Reactions, Especially from "Green" Point of View. Curr Org Synth 2019; 16:523-545. [PMID: 31984929 PMCID: PMC7432197 DOI: 10.2174/1570179416666190415110834] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND The Hirao reaction discovered ca. 35 years ago is an important P-C coupling protocol between dialkyl phosphites and aryl halides in the presence of Pd(PPh3)4 as the catalyst and a base to provide aryl phosphonates. Then, the reaction was extended to other Preagents, such as secondary phosphine oxides and H-phosphinates and to other aryl and hetaryl derivatives to afford also phosphinic esters and tertiary phosphine oxides. Instead of the Pd(PPh3)4 catalyst, Pd(OAc)2 and Ni-salts were also applied as catalyst precursors together with a number of mono- and bidentate P-ligands. OBJECTIVE In our review, we undertook to summarize the target reaction with a special stress on the developments attained in the last 6 years, hence this paper is an update of our earlier reviews in a similar topic. CONCLUSIONS "Greener" syntheses aimed at utilizing phase transfer catalytic and microwave-assisted approaches, even under "P-ligand-free. or even solvent-free conditions are the up-to date versions of the classical Hirao reaction. The mechanism of the reaction is also in the focus these days.
Collapse
Affiliation(s)
- Réka Henyecz
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521Budapest, Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521Budapest, Hungary
| |
Collapse
|
37
|
Henyecz R, Mucsi Z, Keglevich G. Palladium-catalyzed microwave-assisted Hirao reaction utilizing the excess of the diarylphosphine oxide reagent as the P-ligand; a study on the activity and formation of the “PdP2” catalyst. PURE APPL CHEM 2018. [DOI: 10.1515/pac-2018-1004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The microwave-assisted Hirao reaction of bromobenzene and diarylphosphine oxides was performed at 120 °C using triethylamine as the base, and 5% of palladium acetate as the catalyst in ethanol. 5% Excess of the >P(O)H reagent served as the reducing agent, while another 10% as the preligand (in the >POH tautomeric form). It was found that the P–C coupling reaction was significantly faster with (2-MeC6H4)2P(O)H (A) and (3,5-diMeC6H3)2P(O)H (B), than with Ph2P(O)H (C) and (4-MeC6H4)2P(O)H (D). Moreover, species A and B could be applied as selective P-ligands in the reaction of bromobenzene with C or D. Dependence of the effectiveness of “PdP2” catalysts with diarylphosphine oxide preligands on the methyl substituents followed a reversed order as the reactivity of the diarylphosphine oxide species in the P–C coupling itself. Formation of the “PdP2” catalyst from palladium acetate and diarylphosphine oxide has never been studied, but now it was evaluated by us at the B3LYP level of theory applying 6-31G(d,p) for C,H,P,O and SDD/MW28 for Pd including the explicit-implicit solvent model. The novel mechanism requiring three equivalents of the >P(O)H species for each of the palladium acetate molecule was in agreement with the preparative experiments. The ligation of palladium(0) with different P(III) species comprising the >POH form of the >P(O)H reagent was also studied, and the critical role of the steric hindrance on the ligation, and hence on the activity of the “PdP2” catalyst was substantiated. Last but not least, the influence of the Me substituents in the aromatic ring of the P-reagents on the energetics of the elemental steps of the Hirao reaction itself was also evaluated.
Collapse
Affiliation(s)
- Réka Henyecz
- Department of Organic Chemistry and Technology , Budapest University of Technology and Economics , Budapest 1521 , Hungary
| | - Zoltán Mucsi
- Department of Organic Chemistry and Technology , Budapest University of Technology and Economics , Budapest 1521 , Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology , Budapest University of Technology and Economics , Budapest 1521 , Hungary
| |
Collapse
|
38
|
Jójárt R, Pécsy S, Keglevich G, Szécsi M, Rigó R, Özvegy-Laczka C, Kecskeméti G, Mernyák E. Pd-Catalyzed microwave-assisted synthesis of phosphonated 13α-estrones as potential OATP2B1, 17β-HSD1 and/or STS inhibitors. Beilstein J Org Chem 2018; 14:2838-2845. [PMID: 30498534 PMCID: PMC6244214 DOI: 10.3762/bjoc.14.262] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/30/2018] [Indexed: 01/13/2023] Open
Abstract
Novel 2- or 4-phosphonated 13α-estrone derivatives were synthesized via the Hirao reaction. Bromo regioisomers (2- or 4-) of 13α-estrone and its 3-benzyl or 3-methyl ether were reacted with diethyl phosphite or diphenylphosphine oxide using Pd(PPh3)4 as catalyst under microwave irradiation. The influence of the new compounds on the transport function of the organic anion transporting polypeptide OATP2B1 was investigated by measuring Cascade Blue uptake. Derivatives bearing a 3-benzyl ether function displayed substantial submicromolar OATP2B1 inhibitory activity. The inhibitory effects of the compounds on human placental steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1 isozyme (17β-HSD1) were investigated by in vitro radiosubstrate incubation methods. None of the test compounds inhibited the STS markedly. The structure-activity relationship evaluation revealed that 2-substituted 3-hydroxy derivatives are able to inhibit the 17β-HSD1 enzyme with submicromolar IC50 values. Dual OATP2B1 and 17β-HSD1 inhibitors have been identified.
Collapse
Affiliation(s)
- Rebeka Jójárt
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Szabolcs Pécsy
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - Mihály Szécsi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, H-6720 Szeged, Hungary
| | - Réka Rigó
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Gábor Kecskeméti
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| |
Collapse
|
39
|
Keglevich G. The Impact of Microwaves on Organophosphorus Chemistry. CHEM REC 2018; 19:65-76. [DOI: 10.1002/tcr.201800006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/22/2018] [Indexed: 01/20/2023]
Affiliation(s)
- György Keglevich
- Department of Organic Chemistry and TechnologyBudapest University of Technology and Economics 1521 Budapest Hungary
| |
Collapse
|
40
|
Łastawiecka E, Flis A, Stankevič M, Greluk M, Słowik G, Gac W. P-Arylation of secondary phosphine oxides catalyzed by nickel-supported nanoparticles. Org Chem Front 2018. [DOI: 10.1039/c8qo00356d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nickel-supported nanoparticles were used as catalysts for ligand-free Hirao coupling between secondary phosphine oxides and aryl halides.
Collapse
Affiliation(s)
- Elżbieta Łastawiecka
- Department of Organic Chemistry
- Faculty of Chemistry
- Maria Curie-Sklodowska University
- Lublin 20-614
- Poland
| | - Anna Flis
- Department of Organic Chemistry
- Faculty of Chemistry
- Maria Curie-Sklodowska University
- Lublin 20-614
- Poland
| | - Marek Stankevič
- Department of Organic Chemistry
- Faculty of Chemistry
- Maria Curie-Sklodowska University
- Lublin 20-614
- Poland
| | - Magdalena Greluk
- Department of Chemical Technology
- Faculty of Chemistry
- Maria Curie-Skłodowska University
- 20-031 Lublin
- Poland
| | - Grzegorz Słowik
- Department of Chemical Technology
- Faculty of Chemistry
- Maria Curie-Skłodowska University
- 20-031 Lublin
- Poland
| | - Wojciech Gac
- Department of Chemical Technology
- Faculty of Chemistry
- Maria Curie-Skłodowska University
- 20-031 Lublin
- Poland
| |
Collapse
|
41
|
Keglevich G, Henyecz R, Mucsi Z, Kiss NZ. The Palladium Acetate-Catalyzed Microwave-Assisted Hirao Reaction without an Added Phosphorus Ligand as a "Green" Protocol: A Quantum Chemical Study on the Mechanism. Adv Synth Catal 2017; 359:4322-4331. [PMID: 29399016 PMCID: PMC5767766 DOI: 10.1002/adsc.201700895] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/03/2017] [Indexed: 12/21/2022]
Abstract
It was proved by our experiments that on microwave irradiation, the mono‐ or bidentate phosphorus ligands generally applied in the palladium(II)‐catalyzed P–C coupling reaction of aryl bromides and dialkyl phosphites or secondary phosphine oxides may be substituted by the excess of the >P(O)H reagent that exists under a tautomeric equilibrium. Taking into account that the reduction of the palladium(II) salt and the ligation of the palladium(0) so formed requires 3 equivalents of the P‐species for the catalyst applied in a quantity of 5–10%, all together, 15–30% of the P‐reagent is necessary beyond its stoichiometric quantity. In the coupling reaction of diphenylphosphine oxide, it was possible to apply diethyl phosphite as the reducing agent and as the P‐ligand. The reactivities of the diethyl phosphite and diphenylphosphine oxide reagents were compared in a competitive reaction. The mechanism and the energetics of this new variation of the Hirao reaction of bromobenzene with Y2P(O)H reagents (Y=EtO and Ph) was explored by quantum chemical calculations. The first detailed study on simple reaction models justified our assumption that, under the conditions of the reaction, the trivalent form of the >P(O)H reagent may serve as the P‐ligand in the palladium(0) catalyst, and shed light on the fine mechanism of the reaction sequence. The existence of the earlier described bis(palladium complex) {[H(OPh2P)2PdOAc]2} was refuted by high level theoretical calculations. This kind of complex may be formed only with chloride anions instead of the acetate anion. The interaction of palladium acetate and Y2P(O)H may result in only the formation of the [(HO)Y2P]2Pd complex that is the active catalyst in the Hirao reaction. The new variation of the Hirao reaction is of a more general value, and represents the greenest protocol, as there is no need for the usual P‐ligands. Instead, the >P(O)H reagent should be used in an excess of up to 30%. Hence, the costs and environmental burdens may be decreased. ![]()
Collapse
Affiliation(s)
- György Keglevich
- Department of Organic Chemistry and Technology Budapest University of Technology and Economics 1521 Budapest Hungary
| | - Réka Henyecz
- Department of Organic Chemistry and Technology Budapest University of Technology and Economics 1521 Budapest Hungary
| | - Zoltán Mucsi
- Department of Organic Chemistry and Technology Budapest University of Technology and Economics 1521 Budapest Hungary
| | - Nóra Zs Kiss
- Department of Organic Chemistry and Technology Budapest University of Technology and Economics 1521 Budapest Hungary
| |
Collapse
|
42
|
Abstract
In this paper, palladium–DABCO complex supported on magnetic nanoparticles was successfully used as a new magnetically recoverable heterogeneous catalyst for the synthesis of arylphosphonates via P-arylation of different types of aryl halides (aryl iodides/bromides/chlorides and benzene boronic acid/sulfonate), with phosphite esters (triethyl/triphenyl/tri-iso-propyl/diethyl/diphenyl/di-iso-propyl phosphite) in neat water without using any additive. The heterogeneous catalyst was easily isolated from the reaction mixture by an external magnet and reused five times without significant degradation in its activity.
Collapse
Affiliation(s)
- Sara Sobhani
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| | - Zahra Vahidi
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| |
Collapse
|
43
|
Luo H, Liu H, Chen X, Wang K, Luo X, Wang K. Ar–P bond construction by the Pd-catalyzed oxidative cross-coupling of arylsilanes with H-phosphonates via C–Si bond cleavage. Chem Commun (Camb) 2017; 53:956-958. [DOI: 10.1039/c6cc08408g] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel and efficient methodology that allows for the construction of Ar–P bonds via the Pd-catalyzed oxidative cross-coupling reaction of various arylsilanes with H-phosphonates leading to valuable arylphosphonates has been developed.
Collapse
Affiliation(s)
- Haiqing Luo
- Department of Chemistry & Chemical Engineering
- Gannan Normal University
- Ganzhou 341000
- China
| | - Haidong Liu
- Department of Chemistry & Chemical Engineering
- Gannan Normal University
- Ganzhou 341000
- China
| | - Xingwei Chen
- Department of Chemistry & Chemical Engineering
- Gannan Normal University
- Ganzhou 341000
- China
| | - Keke Wang
- Department of Chemistry & Chemical Engineering
- Gannan Normal University
- Ganzhou 341000
- China
| | - Xuzhong Luo
- Department of Chemistry & Chemical Engineering
- Gannan Normal University
- Ganzhou 341000
- China
| | - Kejun Wang
- Department of Chemistry & Chemical Engineering
- Gannan Normal University
- Ganzhou 341000
- China
| |
Collapse
|
44
|
Keglevich G, Kiss NZ, Bálint E, Bagi P, Grün A, Kovács T, Henyecz R, Ábrányi-Balogh P. Milestones in microwave-assisted organophosphorus chemistry. PHOSPHORUS SULFUR 2016. [DOI: 10.1080/10426507.2016.1211657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Nóra Z. Kiss
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Erika Bálint
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Péter Bagi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Alajos Grün
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Tamara Kovács
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Réka Henyecz
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
45
|
Keglevich G, Kiss NZ, Mucsi Z. Milestones in microwave-assisted organophosphorus chemistry. PURE APPL CHEM 2016. [DOI: 10.1515/pac-2016-0604] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractOur recent results in the field of microwave (MW)-assisted organophosphorus syntheses, especially regarding esterifications, condensations, substitutions and additions are surveyed. Beside making organic chemical reactions more efficient, it was possible to perform transformations that are reluctant on conventional heating. Another option is to substitute catalysts, or to simplify catalyst systems under MW conditions. It is also the purpose of this paper to elucidate the scope and limitations of the MW tool, to interpret the MW effects, and to model the distribution of the local overheatings and their beneficial effect. All these considerations are possible on the basis of the enthalpy of activations determined by us utilizing the Arrhenius equation and the pseudo first order kinetic equation.
Collapse
Affiliation(s)
- György Keglevich
- 1Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Nóra Zs. Kiss
- 1Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Zoltán Mucsi
- 1Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| |
Collapse
|
46
|
Wang W, Li C, Yan L, Wang Y, Jiang M, Ding Y. Ionic Liquid/Zn-PPh3 Integrated Porous Organic Polymers Featuring Multifunctional Sites: Highly Active Heterogeneous Catalyst for Cooperative Conversion of CO2 to Cyclic Carbonates. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01142] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenlong Wang
- Division
of Fossil Energy Conversion, Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China
| | - Cunyao Li
- Division
of Fossil Energy Conversion, Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Li Yan
- Division
of Fossil Energy Conversion, Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China
| | - Yuqing Wang
- Division
of Fossil Energy Conversion, Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Miao Jiang
- Division
of Fossil Energy Conversion, Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China
| | - Yunjie Ding
- Division
of Fossil Energy Conversion, Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
47
|
Sobhani S, Ramezani Z. Synthesis of arylphosphonates catalyzed by Pd-imino-Py-γ-Fe2O3 as a new magnetically recyclable heterogeneous catalyst in pure water without requiring any additive. RSC Adv 2016. [DOI: 10.1039/c5ra27330g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Arylphosphonates were synthesized in the presence of Pd-imino-Py-γ-Fe2O3 in pure water without using any additive.
Collapse
Affiliation(s)
- Sara Sobhani
- Department of Chemistry
- College of Sciences
- University of Birjand
- Birjand
- Iran
| | - Zohreh Ramezani
- Department of Chemistry
- College of Sciences
- University of Birjand
- Birjand
- Iran
| |
Collapse
|
48
|
Zhang W, Zhao X, Qiao Y, Guo X, Wang Y, Wei D, Tang M, Niu J. A DFT study on the reaction mechanisms of phosphonation of heteroaryl N-oxides with H-phosphonates. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Sobhani S, Zeraatkar Z. A new magnetically recoverable heterogeneous palladium catalyst for phosphonation reactions in aqueous micellar solution. Appl Organomet Chem 2015. [DOI: 10.1002/aoc.3392] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sara Sobhani
- Department of Chemistry, College of Sciences; University of Birjand; Birjand Iran
| | - Zohre Zeraatkar
- Department of Chemistry, College of Sciences; University of Birjand; Birjand Iran
| |
Collapse
|
50
|
|