1
|
Kumar A, Mishra B, Konar AD, Mylonakis E, Basu A. Molecular Dynamics Simulations Help Determine the Molecular Mechanisms of Lasioglossin-III and Its Variant Peptides' Membrane Interfacial Interactions. J Phys Chem B 2024; 128:6049-6058. [PMID: 38840325 DOI: 10.1021/acs.jpcb.4c02387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Lasioglossin-III (LL-III) is a potent broad-spectrum antimicrobial peptide used in diverse antimicrobial applications. In this work, coarse-grained and all-atom molecular dynamics simulation strategies were used in tandem to interpret the molecular mechanisms involved in the interfacial dynamics of LL-III and its recombinant variants during interactions with diverse cell membrane systems. Our results indicate that the membrane charges act as the driving force for initiating the membrane-peptide interactions, while the hydrophobic or van der Waals forces help to reinforce the membrane-peptide bindings. The optimized charge-hydrophobicity ratio of the LL-III peptides helps ensure their high specificity toward bacterial membranes compared to mammalian membrane systems, which also helps explain our experimental observations. Overall, we hope that our work gives new insight into the antimicrobial action of LL-III peptides and that the adopted simulation strategy will help other scientists and engineers extract maximal information from complex molecular simulations using minimal computational power.
Collapse
Affiliation(s)
- Atul Kumar
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Airport Bypass Road, Gandhinagar, Bhopal 462033, India
| | - Biswajit Mishra
- Department of Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Anita Dutt Konar
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Airport Bypass Road, Gandhinagar, Bhopal 462033, India
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal 462033, India
| | - Eleftherios Mylonakis
- Department of Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Anindya Basu
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Airport Bypass Road, Gandhinagar, Bhopal 462033, India
- School of Biomolecular Engineering and Biotechnology, Rajiv Gandhi Technological University, Bhopal 462033, India
| |
Collapse
|
2
|
Hwang YE, Im S, Cho JH, Lee W, Cho BK, Sung BH, Kim SC. Semi-Biosynthetic Production of Surface-Binding Adhesive Antimicrobial Peptides Using Intein-Mediated Protein Ligation. Int J Mol Sci 2022; 23:15202. [PMID: 36499519 PMCID: PMC9738365 DOI: 10.3390/ijms232315202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Microbial infections remain a global health concern, calling for the urgent need to implement effective prevention measures. Antimicrobial peptides (AMPs) have been extensively studied as potential antimicrobial coating agents. However, an efficient and economical method for AMP production is lacking. Here, we synthesized the direct coating adhesive AMP, NKC-DOPA5, composed of NKC, a potent AMP, and repeats of the adhesive amino acid 3,4-dihydroxyphenylalanine (DOPA) via an intein-mediated protein ligation strategy. NKC was expressed as a soluble fusion protein His-NKC-GyrA (HNG) in Escherichia coli, comprising an N-terminal 6× His-tag and a C-terminal Mxe GyrA intein. The HNG protein was efficiently produced in a 500-L fermenter, with a titer of 1.63 g/L. The NKC-thioester was released from the purified HNG fusion protein by thiol attack and subsequently ligated with chemically synthesized Cys-DOPA5. The ligated peptide His-NKC-Cys-DOPA5 was obtained at a yield of 88.7%. The purified His-NKC-Cys-DOPA5 possessed surface-binding and antimicrobial properties identical to those of the peptide obtained via solid-phase peptide synthesis. His-NKC-Cys-DOPA5 can be applied as a practical and functional antimicrobial coating to various materials, such as medical devices and home appliances.
Collapse
Affiliation(s)
- Young Eun Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seonghun Im
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Center for Industrialization of Agricultural and Livestock Microorganisms (CIALM), Jeongeup 56212, Republic of Korea
| | - Ju Hyun Cho
- Division of Applied Life Science (BK21Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Lima LF, Sousa MGDC, Rodrigues GR, de Oliveira KBS, Pereira AM, da Costa A, Machado R, Franco OL, Dias SC. Elastin-like Polypeptides in Development of Nanomaterials for Application in the Medical Field. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.874790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Elastin-like polypeptides (ELPs) are biopolymers formed by amino acid sequences derived from tropoelastin. These biomolecules can be soluble below critical temperatures, forming aggregates at higher temperatures, which makes them an interesting source for the design of different nanobiomaterials. These nanobiomaterials can be obtained from heterologous expression in several organisms such as bacteria, fungi, and plants. Thanks to the many advantages of ELPs, they have been used in the biomedical field to develop nanoparticles, nanofibers, and nanocomposites. These nanostructures can be used in multiple applications such as drug delivery systems, treatments of type 2 diabetes, cardiovascular diseases, tissue repair, and cancer therapy. Thus, this review aims to shed some light on the main advances in elastin-like-based nanomaterials, their possible expression forms, and importance to the medical field.
Collapse
|
4
|
Li X, Jiang Y, Lin Y. Production of antimicrobial peptide arasin-like Sp in Escherichia coli via an ELP-intein self-cleavage system. J Biotechnol 2022; 347:49-55. [PMID: 35240202 DOI: 10.1016/j.jbiotec.2022.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/30/2021] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Antibiotic resistance is a major public health threat to both humans and animals. There is an urgent need for antimicrobial agents with novel modes of action. Antimicrobial peptides (AMPs) with broad-spectrum antimicrobial activity become the ideal alternative to traditional antibiotics. Here, the ELP-intein self-cleavage system was used to produce antimicrobial peptide arasin-likeSp in Escherichia coli. The tagged target protein (ELP-intein-arasin-likeSp) was mainly expressed in soluble, separated from cell lysates by the inverse transition cycling (ITC), and the arasin-likeSp was further purified by the self-cleavage of intein and the second round of ITC. The final yield of arasin-likeSp was about 3.56 mg/L. Purified arasin-likeSp exhibited significant antibacterial activities against the Gram-positive Bacillus subtilis and Gram-negative Vibrio harveyi bacteria. FE-SEM and PI staining analysis revealed that the arasin-likeSp treatment altered the morphology and membrane permeability of Bacillus subtilis and Vibrio harveyi. Collectively, these data suggest that arasin-likeSp is a candidate AMP for effective inhibition of Vibrio harveyi, a significant bacterial pathogen infecting marine fish and invertebrates. The ELP-intein self-cleavage system described here is a low-cost, simple and potential method for producing antimicrobial peptides, which lays foundations for the large-scale production of antimicrobial peptides in the future.
Collapse
Affiliation(s)
- Xiu Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Yu Jiang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Ying Lin
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
5
|
Production of a polar fish antimicrobial peptide in Escherichia coli using an ELP-intein tag. J Biotechnol 2016; 234:83-89. [PMID: 27485812 DOI: 10.1016/j.jbiotec.2016.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 02/02/2023]
Abstract
An important aspect related to infectious pathogens is their exceptional adaptability in developing resistance, which leads to a perpetual challenge in the discovery of antimicrobial drugs with novel mechanisms of action. Among them, antimicrobial peptides (AMPs) stand out as promising anti-infective molecules. In order to overcome the high costs associated with isolation from natural sources or chemical synthesis of AMPs we propose the expression of Pa-MAP 2, a polyalanine AMP. Pa-MAP 2 was fused to an ELP-intein tag where the ELP (Elastin-like polypeptide) was used to promote aggregation and fast and cost-effective isolation after expression, and the intein was used to stimulate a controlled AMP release. For these, the vector pET21a was used to produce Pa-MAP 2 fused to the N-termini region of a modified Mxe GyrA intein followed by 60 repetitions of ELP. Purified Pa-MAP 2 showed a MIC of 25μM against E. coli ATCC 8739. Batch fermentation demonstrated that Pa-MAP-2 can be produced in both rich and defined media at yields 50-fold higher than reported for other AMPs produced by the ELP-intein system, and in comparable yields to expression systems with protease or chemical cleavage.
Collapse
|
6
|
Pane K, Durante L, Pizzo E, Varcamonti M, Zanfardino A, Sgambati V, Di Maro A, Carpentieri A, Izzo V, Di Donato A, Cafaro V, Notomista E. Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia coli. PLoS One 2016; 11:e0146552. [PMID: 26808536 PMCID: PMC4726619 DOI: 10.1371/journal.pone.0146552] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/19/2015] [Indexed: 11/18/2022] Open
Abstract
Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids), which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200-250 mg/L). After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15-18 mg of recombinant peptide per liter of culture with 96-98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (P)GKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods.
Collapse
Affiliation(s)
- Katia Pane
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Lorenzo Durante
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Elio Pizzo
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Mario Varcamonti
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Anna Zanfardino
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Valeria Sgambati
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Seconda Università di Napoli, Caserta, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Viviana Izzo
- Department of Medicine and Surgery, Università degli Studi di Salerno, Baronissi, Italy
| | - Alberto Di Donato
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Valeria Cafaro
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Eugenio Notomista
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
7
|
Rodríguez V, Lascani J, Asenjo JA, Andrews BA. Production of Cell-Penetrating Peptides in Escherichia coli Using an Intein-Mediated System. Appl Biochem Biotechnol 2015; 175:3025-37. [DOI: 10.1007/s12010-015-1484-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
|