1
|
Kaur G, Bisen S, Singh NK. Nanotechnology in retinal diseases: From disease diagnosis to therapeutic applications. BIOPHYSICS REVIEWS 2024; 5:041305. [PMID: 39512331 PMCID: PMC11540445 DOI: 10.1063/5.0214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/20/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
Nanotechnology has demonstrated tremendous promise in the realm of ocular illnesses, with applications for disease detection and therapeutic interventions. The nanoscale features of nanoparticles enable their precise interactions with retinal tissues, allowing for more efficient and effective treatments. Because biological organs are compatible with diverse nanomaterials, such as nanoparticles, nanowires, nanoscaffolds, and hybrid nanostructures, their usage in biomedical applications, particularly in retinal illnesses, has increased. The use of nanotechnology in medicine is advancing rapidly, and recent advances in nanomedicine-based diagnosis and therapy techniques may provide considerable benefits in addressing the primary causes of blindness related to retinal illnesses. The current state, prospects, and challenges of nanotechnology in monitoring nanostructures or cells in the eye and their application to regenerative ophthalmology have been discussed and thoroughly reviewed. In this review, we build on our previously published review article in 2021, where we discussed the impact of nano-biomaterials in retinal regeneration. However, in this review, we extended our focus to incorporate and discuss the application of nano-biomaterials on all retinal diseases, with a highlight on nanomedicine-based diagnostic and therapeutic research studies.
Collapse
|
2
|
Cortés-Llanos B, Rauti R, Ayuso-Sacido Á, Pérez L, Ballerini L. Impact of Magnetite Nanowires on In Vitro Hippocampal Neural Networks. Biomolecules 2023; 13:biom13050783. [PMID: 37238653 DOI: 10.3390/biom13050783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Nanomaterials design, synthesis, and characterization are ever-expanding approaches toward developing biodevices or neural interfaces to treat neurological diseases. The ability of nanomaterials features to tune neuronal networks' morphology or functionality is still under study. In this work, we unveil how interfacing mammalian brain cultured neurons and iron oxide nanowires' (NWs) orientation affect neuronal and glial densities and network activity. Iron oxide NWs were synthesized by electrodeposition, fixing the diameter to 100 nm and the length to 1 µm. Scanning electron microscopy, Raman, and contact angle measurements were performed to characterize the NWs' morphology, chemical composition, and hydrophilicity. Hippocampal cultures were seeded on NWs devices, and after 14 days, the cell morphology was studied by immunocytochemistry and confocal microscopy. Live calcium imaging was performed to study neuronal activity. Using random nanowires (R-NWs), higher neuronal and glial cell densities were obtained compared with the control and vertical nanowires (V-NWs), while using V-NWs, more stellate glial cells were found. R-NWs produced a reduction in neuronal activity, while V-NWs increased the neuronal network activity, possibly due to a higher neuronal maturity and a lower number of GABAergic neurons, respectively. These results highlight the potential of NWs manipulations to design ad hoc regenerative interfaces.
Collapse
Affiliation(s)
- Belén Cortés-Llanos
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Fundación IMDEA Nanociencia, C/Faraday 9, 28049 Madrid, Spain
- Department of Medicine, Duke University, Durham, NC 27705, USA
| | - Rossana Rauti
- International School for Advanced Studies (ISAS-SISSA), 34136 Trieste, Italy
- Deparment of Biomolecular Sciences, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy
| | - Ángel Ayuso-Sacido
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
- Faculty of Experimental Science and Faculty of Medicine, University of Francisco de Vitoria, 28223 Madrid, Spain
| | - Lucas Pérez
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Fundación IMDEA Nanociencia, C/Faraday 9, 28049 Madrid, Spain
| | - Laura Ballerini
- International School for Advanced Studies (ISAS-SISSA), 34136 Trieste, Italy
| |
Collapse
|
3
|
Srivastava RP, Khang DY. Structuring of Si into Multiple Scales by Metal-Assisted Chemical Etching. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005932. [PMID: 34013605 DOI: 10.1002/adma.202005932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/31/2020] [Revised: 11/18/2020] [Indexed: 05/27/2023]
Abstract
Structuring Si, ranging from nanoscale to macroscale feature dimensions, is essential for many applications. Metal-assisted chemical etching (MaCE) has been developed as a simple, low-cost, and scalable method to produce structures across widely different dimensions. The process involves various parameters, such as catalyst, substrate doping type and level, crystallography, etchant formulation, and etch additives. Careful optimization of these parameters is the key to the successful fabrication of Si structures. In this review, recent additions to the MaCE process are presented after a brief introduction to the fundamental principles involved in MaCE. In particular, the bulk-scale structuring of Si by MaCE is summarized and critically discussed with application examples. Various approaches for effective mass transport schemes are introduced and discussed. Further, the fine control of etch directionality and uniformity, and the suppression of unwanted side etching are also discussed. Known application examples of Si macrostructures fabricated by MaCE, though limited thus far, are presented. There are significant opportunities for the application of macroscale Si structures in different fields, such as microfluidics, micro-total analysis systems, and microelectromechanical systems, etc. Thus more research is necessary on macroscale MaCE of Si and their applications.
Collapse
Affiliation(s)
- Ravi P Srivastava
- Soft Electronic Materials and Devices Laboratory, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea
| | - Dahl-Young Khang
- Soft Electronic Materials and Devices Laboratory, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
4
|
Nano-Biomaterials for Retinal Regeneration. NANOMATERIALS 2021; 11:nano11081880. [PMID: 34443710 PMCID: PMC8399153 DOI: 10.3390/nano11081880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/14/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022]
Abstract
Nanoscience and nanotechnology have revolutionized key areas of environmental sciences, including biological and physical sciences. Nanoscience is useful in interconnecting these sciences to find new hybrid avenues targeted at improving daily life. Pharmaceuticals, regenerative medicine, and stem cell research are among the prominent segments of biological sciences that will be improved by nanostructure innovations. The present review was written to present a comprehensive insight into various emerging nanomaterials, such as nanoparticles, nanowires, hybrid nanostructures, and nanoscaffolds, that have been useful in mice for ocular tissue engineering and regeneration. Furthermore, the current status, future perspectives, and challenges of nanotechnology in tracking cells or nanostructures in the eye and their use in modified regenerative ophthalmology mechanisms have also been proposed and discussed in detail. In the present review, various research findings on the use of nano-biomaterials in retinal regeneration and retinal remediation are presented, and these findings might be useful for future clinical applications.
Collapse
|
5
|
|
6
|
Abend A, Steele C, Schmidt S, Frank R, Jahnke HG, Zink M. Proliferation and Cluster Analysis of Neurons and Glial Cell Organization on Nanocolumnar TiN Sub-Strates. Int J Mol Sci 2020; 21:E6249. [PMID: 32872379 PMCID: PMC7503702 DOI: 10.3390/ijms21176249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Biomaterials employed for neural stimulation, as well as brain/machine interfaces, offer great perspectives to combat neurodegenerative diseases, while application of lab-on-a-chip devices such as multielectrode arrays is a promising alternative to assess neural function in vitro. For bioelectronic monitoring, nanostructured microelectrodes are required, which exhibit an increased surface area where the detection sensitivity is not reduced by the self-impedance of the electrode. In our study, we investigated the interaction of neurons (SH-SY5Y) and glial cells (U-87 MG) with nanocolumnar titanium nitride (TiN) electrode materials in comparison to TiN with larger surface grains, gold, and indium tin oxide (ITO) substrates. Glial cells showed an enhanced proliferation on TiN materials; however, these cells spread evenly distributed over all the substrate surfaces. By contrast, neurons proliferated fastest on nanocolumnar TiN and formed large cell agglomerations. We implemented a radial autocorrelation function of cellular positions combined with various clustering algorithms. These combined analyses allowed us to quantify the largest cluster on nanocolumnar TiN; however, on ITO and gold, neurons spread more homogeneously across the substrates. As SH-SY5Y cells tend to grow in clusters under physiologic conditions, our study proves nanocolumnar TiN as a potential bioactive material candidate for the application of microelectrodes in contact with neurons. To this end, the employed K-means clustering algorithm together with radial autocorrelation analysis is a valuable tool to quantify cell-surface interaction and cell organization to evaluate biomaterials' performance in vitro.
Collapse
Affiliation(s)
- Alice Abend
- Soft Matter Physics Division and Biotechnology & Biomedical Group, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany; (A.A.); (C.S.)
| | - Chelsie Steele
- Soft Matter Physics Division and Biotechnology & Biomedical Group, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany; (A.A.); (C.S.)
| | - Sabine Schmidt
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany; (S.S.); (R.F.)
| | - Ronny Frank
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany; (S.S.); (R.F.)
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany; (S.S.); (R.F.)
| | - Mareike Zink
- Soft Matter Physics Division and Biotechnology & Biomedical Group, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany; (A.A.); (C.S.)
| |
Collapse
|
7
|
3D inkjet printing of biomaterials with strength reliability and cytocompatibility: Quantitative process strategy for Ti-6Al-4V. Biomaterials 2019; 213:119212. [DOI: 10.1016/j.biomaterials.2019.05.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2019] [Accepted: 05/10/2019] [Indexed: 02/01/2023]
|
8
|
Abariute L, Lard M, Hebisch E, Prinz CN. Uptake of nanowires by human lung adenocarcinoma cells. PLoS One 2019; 14:e0218122. [PMID: 31226121 PMCID: PMC6588221 DOI: 10.1371/journal.pone.0218122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2019] [Accepted: 05/27/2019] [Indexed: 12/23/2022] Open
Abstract
Semiconductor nanowires are increasingly used in optoelectronic devices. However, their effects on human health have not been assessed fully. Here, we investigate the effects of gallium phosphide nanowires on human lung adenocarcinoma cells. Four different geometries of nanowires were suspended in the cell culture for 48 hours. We show that cells internalize the nanowires and that the nanowires have no effect on cell proliferation rate, motility, viability and intracellular ROS levels. By blocking specific internalization pathways, we demonstrate that the nanowire uptake is the result of a combination of processes, requiring dynamin and actin polymerization, which suggests an internalization through macropinocytosis and phagocytosis.
Collapse
Affiliation(s)
- Laura Abariute
- Division of Solid State Physics, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Mercy Lard
- Division of Solid State Physics, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Elke Hebisch
- Division of Solid State Physics, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Christelle N. Prinz
- Division of Solid State Physics, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Liliom H, Lajer P, Bérces Z, Csernyus B, Szabó Á, Pinke D, Lőw P, Fekete Z, Pongrácz A, Schlett K. Comparing the effects of uncoated nanostructured surfaces on primary neurons and astrocytes. J Biomed Mater Res A 2019; 107:2350-2359. [PMID: 31161618 DOI: 10.1002/jbm.a.36743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022]
Abstract
The long-term application of central nervous system implants is currently limited by the negative response of the brain tissue, affecting both the performance of the device and the survival of nearby cells. Topographical modification of implant surfaces mimicking the structure and dimensions of the extracellular matrix may provide a solution to this negative tissue response and has been shown to affect the attachment and behavior of both neurons and astrocytes. In our study, commonly used neural implant materials, silicon, and platinum were tested with or without nanoscale surface modifications. No biological coatings were used in order to only examine the effect of the nanostructuring. We seeded primary mouse astrocytes and hippocampal neurons onto four different surfaces: flat polysilicon, nanostructured polysilicon, and platinum-coated versions of these surfaces. Fluorescent wide-field, confocal, and scanning electron microscopy were used to characterize the attachment, spreading and proliferation of these cell types. In case of astrocytes, we found that both cell number and average cell spreading was significantly larger on platinum, compared to silicon surfaces, while silicon surfaces impeded glial proliferation. Nanostructuring did not have a significant effect on either parameter in astrocytes but influenced the orientation of actin filaments and glial fibrillary acidic protein fibers. Neuronal soma attachment was impaired on metal surfaces while nanostructuring seemed to influence neuronal growth cone morphology, regardless of surface material. Taken together, the type of metals tested had a profound influence on cellular responses, which was only slightly modified by nanopatterning.
Collapse
Affiliation(s)
- Hanna Liliom
- Neuronal Cell Biology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Panna Lajer
- Neuronal Cell Biology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Zsófia Bérces
- Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary.,Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Bence Csernyus
- Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Ágnes Szabó
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Domonkos Pinke
- Lab. of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Lőw
- Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Anita Pongrácz
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary.,Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Katalin Schlett
- Neuronal Cell Biology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
10
|
Staufer O, Weber S, Bengtson CP, Bading H, Rustom A, Spatz JP. Adhesion Stabilized en Masse Intracellular Electrical Recordings from Multicellular Assemblies. NANO LETTERS 2019; 19:3244-3255. [PMID: 30950627 PMCID: PMC6727598 DOI: 10.1021/acs.nanolett.9b00784] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Indexed: 05/02/2023]
Abstract
Coordinated collective electrochemical signals in multicellular assemblies, such as ion fluxes, membrane potentials, electrical gradients, and steady electric fields, play an important role in cell and tissue spatial organization during many physiological processes like wound healing, inflammatory responses, and hormone release. This mass of electric actions cumulates in an en masse activity within cell collectives which cannot be deduced from considerations at the individual cell level. However, continuously sampling en masse collective electrochemical actions of the global electrochemical activity of large-scale electrically coupled cellular assemblies with intracellular resolution over long time periods has been impeded by a lack of appropriate recording techniques. Here we present a bioelectrical interface consisting of low impedance vertical gold nanoelectrode interfaces able to penetrate the cellular membrane in the course of cellular adhesion, thereby allowing en masse recordings of intracellular electrochemical potentials that transverse electrically coupled NRK fibroblast, C2C12 myotube assemblies, and SH-SY5Y neuronal networks of more than 200,000 cells. We found that the intracellular electrical access of the nanoelectrodes correlates with substrate adhesion dynamics and that penetration, stabilization, and sealing of the electrode-cell interface involves recruitment of surrounding focal adhesion complexes and the anchoring of actin bundles, which form a caulking at the electrode base. Intracellular recordings were stable for several days, and monitoring of both basal activity as well as pharmacologically altered electric signals with high signal-to-noise ratios and excellent electrode coupling was performed.
Collapse
Affiliation(s)
- Oskar Staufer
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Sebastian Weber
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - C. Peter Bengtson
- Department
of Neurobiology, Interdisciplinary Center
for Neurosciences, Im
Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department
of Neurobiology, Interdisciplinary Center
for Neurosciences, Im
Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Amin Rustom
- Department
of Neurobiology, Interdisciplinary Center
for Neurosciences, Im
Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Joachim P. Spatz
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Gautam V, Naureen S, Shahid N, Gao Q, Wang Y, Nisbet D, Jagadish C, Daria VR. Engineering Highly Interconnected Neuronal Networks on Nanowire Scaffolds. NANO LETTERS 2017; 17:3369-3375. [PMID: 28437614 DOI: 10.1021/acs.nanolett.6b05288] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/22/2023]
Abstract
Identifying the specific role of physical guidance cues in the growth of neurons is crucial for understanding the fundamental biology of brain development and for designing scaffolds for tissue engineering. Here, we investigate the structural significance of nanoscale topographies as physical cues for neurite outgrowth and circuit formation by growing neurons on semiconductor nanowires. We monitored neurite growth using optical and scanning electron microscopy and evaluated the spontaneous neuronal network activity using functional calcium imaging. We show, for the first time, that an isotropic arrangement of indium phosphide (InP) nanowires can serve as physical cues for guiding neurite growth and aid in forming a network with neighboring neurons. Most importantly, we confirm that multiple neurons, with neurites guided by the topography of the InP nanowire scaffolds, exhibit synchronized calcium activity, implying intercellular communications via synaptic connections. Our study imparts new fundamental insights on the role of nanotopographical cues in the formation of functional neuronal circuits in the brain and will therefore advance the development of neuroprosthetic scaffolds.
Collapse
Affiliation(s)
- Vini Gautam
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, ‡Department of Electronic Materials Engineering, Research School of Physics and Engineering, §Laboratory of Advanced Biomaterials, Research School of Engineering, ∥Australian National Fabrication Facility, Research School of Physics and Engineering, Australian National University , Canberra, ACT 2601, Australia
| | - Shagufta Naureen
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, ‡Department of Electronic Materials Engineering, Research School of Physics and Engineering, §Laboratory of Advanced Biomaterials, Research School of Engineering, ∥Australian National Fabrication Facility, Research School of Physics and Engineering, Australian National University , Canberra, ACT 2601, Australia
| | - Naeem Shahid
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, ‡Department of Electronic Materials Engineering, Research School of Physics and Engineering, §Laboratory of Advanced Biomaterials, Research School of Engineering, ∥Australian National Fabrication Facility, Research School of Physics and Engineering, Australian National University , Canberra, ACT 2601, Australia
| | - Qian Gao
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, ‡Department of Electronic Materials Engineering, Research School of Physics and Engineering, §Laboratory of Advanced Biomaterials, Research School of Engineering, ∥Australian National Fabrication Facility, Research School of Physics and Engineering, Australian National University , Canberra, ACT 2601, Australia
| | - Yi Wang
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, ‡Department of Electronic Materials Engineering, Research School of Physics and Engineering, §Laboratory of Advanced Biomaterials, Research School of Engineering, ∥Australian National Fabrication Facility, Research School of Physics and Engineering, Australian National University , Canberra, ACT 2601, Australia
| | - David Nisbet
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, ‡Department of Electronic Materials Engineering, Research School of Physics and Engineering, §Laboratory of Advanced Biomaterials, Research School of Engineering, ∥Australian National Fabrication Facility, Research School of Physics and Engineering, Australian National University , Canberra, ACT 2601, Australia
| | - Chennupati Jagadish
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, ‡Department of Electronic Materials Engineering, Research School of Physics and Engineering, §Laboratory of Advanced Biomaterials, Research School of Engineering, ∥Australian National Fabrication Facility, Research School of Physics and Engineering, Australian National University , Canberra, ACT 2601, Australia
| | - Vincent R Daria
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, ‡Department of Electronic Materials Engineering, Research School of Physics and Engineering, §Laboratory of Advanced Biomaterials, Research School of Engineering, ∥Australian National Fabrication Facility, Research School of Physics and Engineering, Australian National University , Canberra, ACT 2601, Australia
| |
Collapse
|
12
|
Kavaldzhiev M, Perez JE, Ivanov Y, Bertoncini A, Liberale C, Kosel J. Biocompatible 3D printed magnetic micro needles. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa5ccb] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
|
13
|
Zalis MC, Johansson S, Johansson F, Johansson UE. Exploration of physical and chemical cues on retinal cell fate. Mol Cell Neurosci 2016; 75:122-32. [DOI: 10.1016/j.mcn.2016.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2015] [Revised: 06/29/2016] [Accepted: 07/25/2016] [Indexed: 12/28/2022] Open
|
14
|
From immobilized cells to motile cells on a bed-of-nails: effects of vertical nanowire array density on cell behaviour. Sci Rep 2015; 5:18535. [PMID: 26691936 PMCID: PMC4686997 DOI: 10.1038/srep18535] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2015] [Accepted: 11/19/2015] [Indexed: 01/27/2023] Open
Abstract
The field of vertical nanowire array-based applications in cell biology is growing rapidly and an increasing number of applications are being explored. These applications almost invariably rely on the physical properties of the nanowire arrays, creating a need for a better understanding of how their physical properties affect cell behaviour. Here, we investigate the effects of nanowire density on cell migration, division and morphology for murine fibroblasts. Our results show that few nanowires are sufficient to immobilize cells, while a high nanowire spatial density enables a ”bed-of-nails” regime, where cells reside on top of the nanowires and are fully motile. The presence of nanowires decreases the cell proliferation rate, even in the “bed-of-nails” regime. We show that the cell morphology strongly depends on the nanowire density. Cells cultured on low (0.1 μm−2) and medium (1 μm−2) density substrates exhibit an increased number of multi-nucleated cells and micronuclei. These were not observed in cells cultured on high nanowire density substrates (4 μm−2). The results offer important guidelines to minimize cell-function perturbations on nanowire arrays. Moreover, these findings offer the possibility to tune cell proliferation and migration independently by adjusting the nanowire density, which may have applications in drug testing.
Collapse
|
15
|
Piret G, Perez MT, Prinz CN. Support of Neuronal Growth Over Glial Growth and Guidance of Optic Nerve Axons by Vertical Nanowire Arrays. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18944-18948. [PMID: 26262507 DOI: 10.1021/acsami.5b03798] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/04/2023]
Abstract
Neural cultures are very useful in neuroscience, providing simpler and better controlled systems than the in vivo situation. Neural tissue contains two main cell types, neurons and glia, and interactions between these are essential for appropriate neuronal development. In neural cultures, glial cells tend to overgrow neurons, limiting the access to neuronal interrogation. There is therefore a pressing need for improved systems that enable a good separation when coculturing neurons and glial cells simultaneously, allowing one to address the neurons unequivocally. Here, we used substrates consisting of dense arrays of vertical nanowires intercalated by flat regions to separate retinal neurons and glial cells in distinct, but neighboring, compartments. We also generated a nanowire patterning capable of guiding optic nerve axons. The results will facilitate the design of surfaces aimed at studying and controlling neuronal networks.
Collapse
Affiliation(s)
- Gaëlle Piret
- Division of Solid State Physics, Lund University , SE-221 00 Lund, Sweden
- Department of Clinical Sciences Lund, Division of Ophthalmology, Lund University , SE-221 84 Lund, Sweden
- NanoLund, Lund University , SE-221 00 Lund, Sweden
| | - Maria-Thereza Perez
- Department of Clinical Sciences Lund, Division of Ophthalmology, Lund University , SE-221 84 Lund, Sweden
- NanoLund, Lund University , SE-221 00 Lund, Sweden
| | - Christelle N Prinz
- Division of Solid State Physics, Lund University , SE-221 00 Lund, Sweden
- NanoLund, Lund University , SE-221 00 Lund, Sweden
- Neuronano Research Center (NRC), Lund University , SE-221 84 Lund, Sweden
| |
Collapse
|
16
|
Prinz CN. Interactions between semiconductor nanowires and living cells. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:233103. [PMID: 26010455 DOI: 10.1088/0953-8984/27/23/233103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/26/2023]
Abstract
Semiconductor nanowires are increasingly used for biological applications and their small dimensions make them a promising tool for sensing and manipulating cells with minimal perturbation. In order to interface cells with nanowires in a controlled fashion, it is essential to understand the interactions between nanowires and living cells. The present paper reviews current progress in the understanding of these interactions, with knowledge gathered from studies where living cells were interfaced with vertical nanowire arrays. The effect of nanowires on cells is reported in terms of viability, cell-nanowire interface morphology, cell behavior, changes in gene expression as well as cellular stress markers. Unexplored issues and unanswered questions are discussed.
Collapse
Affiliation(s)
- Christelle N Prinz
- Division of Solid State Physics, Nanometer Structure Consortium, Neuronano Research Center, Lund University, Box 118, 22 100 Lund, Sweden
| |
Collapse
|
17
|
3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials 2015; 53:173-83. [DOI: 10.1016/j.biomaterials.2015.02.021] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2014] [Revised: 01/21/2015] [Accepted: 02/01/2015] [Indexed: 01/10/2023]
|