1
|
Kautu A, Sharma S, Singh R, Negi SS, Singh N, Swain N, Kumar V, Kumar N, Gupta P, Bhatia D, Joshi KB. Metallopeptide nanoreservoirs for concurrent imaging and detoxification of lead (Pb) from human retinal pigment epithelial (hRPE1) cells. NANOSCALE 2024; 16:14940-14952. [PMID: 39046356 DOI: 10.1039/d4nr02236j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Inspired by natural metallopeptides, our work focuses on engineering self-assembling nanostructures of C2-symmetric metallopeptide conjugates (MPC) from a pyridine-bis-tripeptide bioprobe that uniquely detects lead (Pb2+) ions by emitting a fluorescence signal at 450 nm, which is further intensified in the presence of DAPI (λem = 458 nm), enhancing the bioimaging quality. This study enables precise lead quantification by modulating the ionic conformation and morphology. Experimental and theoretical insights elucidate the nanostructure formation mechanism, laying the groundwork for materials encapsulation and advancing lead detoxification. Our proof-of-principle experiment, demonstrating actin filament recovery in lead-treated cells, signifies therapeutic potential for intracellular lead aggregation and introduces novel avenues in biotechnological applications within biomaterials science.
Collapse
Affiliation(s)
- Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Ramesh Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gujarat 382355, India.
| | - Saurabh Singh Negi
- Computational Catalysis Centre, Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Uttarakhand, India.
| | - Narendra Singh
- Indian Institute of Technology Kanpur, U.P., 208016, India
| | - Narayan Swain
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Vikas Kumar
- Department of Chemistry, Government College Khimlasha, M.P., India
| | - Nikunj Kumar
- Computational Catalysis Centre, Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Uttarakhand, India.
| | - Puneet Gupta
- Computational Catalysis Centre, Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Uttarakhand, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gujarat 382355, India.
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| |
Collapse
|
2
|
Mehta PK, Jeon J, Ryu K, Park SH, Lee KH. Ratiometric fluorescent detection of lead ions in aquatic environment and living cells using a fluorescent peptide-based probe. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128161. [PMID: 35033727 DOI: 10.1016/j.jhazmat.2021.128161] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Ratiometric fluorescent detection using dual emission bands is highly necessary to quantify Pb(II) in aquatic environment and live cells. We synthesized a ratiometric fluorescent peptidyl probe (1) by conjugation of a peptide receptor for Pb(II) with an excimer-forming benzothiazolylcyanovinylene fluorophore. The peptidyl probe dissolved well in aqueous solution and displayed an emission band at 538 nm (λex = 460 nm). Upon addition of Pb(II) (0-20 μM), the emission maximum shifted from 538 nm to 575 nm and the emission intensity ratio (I575 /I538) increased significantly from 0.40 to 2.26. 1 exhibited a selective ratiometric response to Pb(II) over other metal ions. 1 with a low detection limit (1.2 ppb) of Pb(II) detected nanomolar concentrations (0-500 nM) of Pb(II) ions in groundwater and tap water. The cell-permeable probe detected intracellular Pb(II) by ratiometric fluorescent images. The binding mode study using NMR, IR and CD spectroscopy, and TEM revealed that the probe formed a 1:1 complex with Pb(II) and then formed red-emissive nanoparticles and fibrils. The probe exhibited desirable detection properties such as ratiometric detection, high solubility in water, visible light excitation, high selectivity and sensitivity for Pb(II), cell-permeability, and rapid response (< 6 min).
Collapse
Affiliation(s)
- Pramod Kumar Mehta
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, South Korea
| | - Jongyong Jeon
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, South Korea
| | - Ki Ryu
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, South Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, South Korea
| | - Keun-Hyeung Lee
- Research Center for Controlling Intercellular Communication and Education and Research Center for Smart Energy Materials and Process, Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, South Korea.
| |
Collapse
|
3
|
Chen SY, Li Z, Li K, Yu XQ. Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213691] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Biswal B, Pal A, Bag B. Two-step FRET mediated metal ion induced signalling responses in a probe appended with three fluorophores. Dalton Trans 2017. [DOI: 10.1039/c7dt01592e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tri-fluorophore appended Tren receptor based probe exhibited chelation induced ratiometric fluorescence signalling through a two-step FRET process; enhancement of FAn→ FRhenergy transfer efficiency through an FNBDintermediate was observed.
Collapse
Affiliation(s)
- Biswonath Biswal
- Colloids and Materials Chemistry Department
- CSIR-Institute of Minerals and Materials Technology
- Bhubaneswar-751 013
- India
| | - Ajoy Pal
- Colloids and Materials Chemistry Department
- CSIR-Institute of Minerals and Materials Technology
- Bhubaneswar-751 013
- India
| | - Bamaprasad Bag
- Colloids and Materials Chemistry Department
- CSIR-Institute of Minerals and Materials Technology
- Bhubaneswar-751 013
- India
| |
Collapse
|
5
|
Biswal B, Mallick D, Bag B. Signaling preferences of substituted pyrrole coupled six-membered rhodamine spirocyclic probes for Hg2+ ion detection. Org Biomol Chem 2016; 14:2241-8. [DOI: 10.1039/c5ob02606g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Six-membered spiro-ring expanded probes in rhodamine scaffolds exhibit Hg2+ ion specific dual mode signaling responses; specificity is achieved with tuning substituents on the appended pyrrole receptor.
Collapse
Affiliation(s)
- Biswonath Biswal
- Colloids and Materials Chemistry Department
- CSIR-Institute of Minerals and Materials Technology
- Bhubaneswar-751 013
- India
| | - Debajani Mallick
- Colloids and Materials Chemistry Department
- CSIR-Institute of Minerals and Materials Technology
- Bhubaneswar-751 013
- India
| | - Bamaprasad Bag
- Colloids and Materials Chemistry Department
- CSIR-Institute of Minerals and Materials Technology
- Bhubaneswar-751 013
- India
| |
Collapse
|
6
|
Hameed A, Shafiq Z, Yaqub M, Hussain M, Hussain MA, Afzal M, Tahir MN, Naseer MM. Me3N-promoted synthesis of 2,3,4,4a-tetrahydroxanthen-1-one: preparation of thiosemicarbazone derivatives, their solid state self-assembly and antimicrobial properties. NEW J CHEM 2015. [DOI: 10.1039/c5nj01879j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thiosemicarbazones (5a–5j) have been synthesized from 2,3,4,4a-tetrahydroxanthen-1-one, obtained in high yield through Me3N-promoted domino Baylis–Hillman/oxa-Michael reaction. Their solid-state self-assembly and antimicrobial properties are studied.
Collapse
Affiliation(s)
- Aminah Hameed
- Institute of Chemical Sciences
- Organic Chemistry Division
- Bahauddin Zakariya University
- Multan 60800
- Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences
- Organic Chemistry Division
- Bahauddin Zakariya University
- Multan 60800
- Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences
- Organic Chemistry Division
- Bahauddin Zakariya University
- Multan 60800
- Pakistan
| | - Mazhar Hussain
- Institute of Chemical Sciences
- Organic Chemistry Division
- Bahauddin Zakariya University
- Multan 60800
- Pakistan
| | | | - Muhammad Afzal
- Department of Chemistry
- University of Sargodha
- Sargodha
- Pakistan
| | | | | |
Collapse
|
7
|
Pal A, Bag B. Dual mode signaling responses of a rhodamine based probe and its immobilization onto a silica gel surface for specific mercury ion detection. Dalton Trans 2015; 44:15304-15. [DOI: 10.1039/c5dt01334h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The amino-ethyl-rhodamine-B based probe 2 appended with a 3-aminomethyl-(2-amino-1-pyridyl) group retained its Hg(ii)-specific chromogenic and fluorogenic signaling responses in an aqueous medium even upon immobilization onto a silica gel surface for selective detection and extraction of Hg(ii) ions.
Collapse
Affiliation(s)
- Ajoy Pal
- Colloids and Materials Chemistry Department
- Academy of Scientific and Innovative Research
- CSIR-Institute of Minerals and Materials Technology
- Bhubaneswar-751 013
- India
| | - Bamaprasad Bag
- Colloids and Materials Chemistry Department
- Academy of Scientific and Innovative Research
- CSIR-Institute of Minerals and Materials Technology
- Bhubaneswar-751 013
- India
| |
Collapse
|