1
|
Wang D, Lang W, Wang W, Zou Q, Yang C, Liu F, Zhao T. CuH-Catalyzed Selective N-Methylation of Amines Using Paraformaldehyde as a C1 Source. ACS OMEGA 2023; 8:30640-30645. [PMID: 37636962 PMCID: PMC10448681 DOI: 10.1021/acsomega.3c04332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Copper hydride (CuH) complexes have been proposed as key intermediates in synthesis and catalysis. Herein, we developed a highly efficient strategy for CuH-catalyzed N-methylation of aromatic and aliphatic amines using paraformaldehyde and polymethylhydrosiloxane (PMHS) under mild reaction conditions. The reaction proceeded smoothly without additives to furnish the corresponding N-methylated products using cyclic(alkyl)(amino)carbene (CAAC)CuH as a reaction intermediate, which results from a reaction between PMHS and (CAAC)CuCl.
Collapse
Affiliation(s)
- Diedie Wang
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Wanglv Lang
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Wan Wang
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Qizhuang Zou
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Chunliang Yang
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Fei Liu
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Tianxiang Zhao
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
2
|
Guin AK, Pal S, Chakraborty S, Chakraborty S, Paul ND. N-Alkylation of Amines by C1-C10 Aliphatic Alcohols Using A Well-Defined Ru(II)-Catalyst. A Metal-Ligand Cooperative Approach. J Org Chem 2023; 88:5944-5961. [PMID: 37052217 DOI: 10.1021/acs.joc.3c00313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A Ru(II)-catalyzed efficient and selective N-alkylation of amines by C1-C10 aliphatic alcohols is reported. The catalyst [Ru(L1a)(PPh3)Cl2] (1a) bearing a tridentate redox-active azo-aromatic pincer, 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (L1a) is air-stable, easy to prepare, and showed wide functional group tolerance requiring only 1.0 mol % (for N-methylation and N-ethylation) and 0.1 mol % of catalyst loading for N-alkylation with C3-C10 alcohols. A wide array of N-methylated, N-ethylated, and N-alkylated amines were prepared in moderate to good yields via direct coupling of amines and alcohols. 1a efficiently catalyzes the N-alkylation of diamines selectively. It is even suitable for synthesizing N-alkylated diamines using (aliphatic) diols producing the tumor-active drug molecule MSX-122 in moderate yield. 1a showed excellent chemo-selectivity during the N-alkylation using oleyl alcohol and monoterpenoid β-citronellol. Control experiments and mechanistic investigations revealed that the 1a-catalyzed N-alkylation reactions proceed via a borrowing hydrogen transfer pathway where the hydrogen removed from the alcohol during the dehydrogenation step is stored in the ligand backbone of 1a, which in the subsequent steps transferred to the in situ formed imine intermediate to produce the N-alkylated amines.
Collapse
Affiliation(s)
- Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
3
|
Chen L, Zhou X, Chen Z, Wang C, Wang S, Teng H. A versatile way for the synthesis of monomethylamines by reduction of N-substituted carbonylimidazoles with the NaBH 4/I 2 system. Beilstein J Org Chem 2022; 18:1032-1039. [PMID: 36105729 PMCID: PMC9443423 DOI: 10.3762/bjoc.18.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
An economical and versatile protocol for the one-pot synthesis of monomethylamines by reduction of N-substituted carbonylimidazoles with NaBH4/I2 in THF at reflux temperature is described. This method used no special catalyst and various monomethylamines can be easily obtained in moderate to good yields from a wide range of raw materials including amines (primary amines and secondary amines), carboxylic acids and isocyanates. Besides, an interesting reduction selectivity was observed. Exploration of the reaction process shows that it undergoes a two-step pathway via a formamide intermediate and the reduction of the formamide intermediate to monomethylamine as the rate-determining step. This work can contribute significantly expanding the applications of N-substituted carbonylimidazoles.
Collapse
Affiliation(s)
- Lin Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Xuan Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Zhiyong Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Changxu Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Shunjie Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Hanbing Teng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
4
|
Underlying Mechanisms of Reductive Amination on Pd-Catalysts: The Unique Role of Hydroxyl Group in Generating Sterically Hindered Amine. Int J Mol Sci 2022; 23:ijms23147621. [PMID: 35886969 PMCID: PMC9320161 DOI: 10.3390/ijms23147621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022] Open
Abstract
Pd nanospecies supported on porous g-C3N4 nanosheets were prepared for efficient reductive amination reactions. The structures of the catalysts were characterized via FTIR, XRD, XPS, SEM, TEM, and TG analysis, and the mechanisms were investigated using in situ ATR−FTIR spectroscopic analysis complemented by theoretical calculation. It transpired that the valence state of the Pd is not the dominating factor; rather, the hydroxyl group of the Pd(OH)2 cluster is crucial. Thus, by passing protons between different molecules, the hydroxyl group facilitates both the generation of the imine intermediate and the reduction of the C=N unit. As a result, the sterically hindered amines can be obtained at high selectivity (>90%) at room temperature.
Collapse
|
5
|
Cho JH, Ha Y, Cho A, Park J, Choi J, Won Y, Kim H, Kim BM. A bimetallic PdCu–Fe 3O 4 catalyst with an optimal d-band centre for selective N-methylation of aromatic amines with methanol. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00065b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Highly efficient and selective N-methylation of aniline with methanol is possible with Pd1Cu0.6–Fe3O4 nanoparticle catalyst.
Collapse
Affiliation(s)
- Jin Hee Cho
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwank-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yoonhoo Ha
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ahra Cho
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwank-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jihye Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaeyoon Choi
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwank-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Youngdae Won
- The Research Institute of Basic Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Byeong Moon Kim
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwank-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
6
|
Dindar S, Nemati Kharat A, Abbasi A. Green and chemo selective amine methylation using methanol by an organometallic ruthenium complex. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Goyal V, Naik G, Narani A, Natte K, Jagadeesh RV. Recent developments in reductive N-methylation with base-metal catalysts. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Liu J, Song Y, Wu X, Ma L. N-Dimethylation and N-Functionalization of Amines Using Ru Nanoparticle Catalysts and Formaldehyde or Functional Aldehydes as the Carbon Source. ACS OMEGA 2021; 6:22504-22513. [PMID: 34514223 PMCID: PMC8427653 DOI: 10.1021/acsomega.1c01961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
N-methylated amines are essential bioactive compounds and have been widely used in the fine and bulk chemical industries, as well as in pharmaceuticals, agrochemicals, and dyes. Developing green, efficient, and low-cost catalysts for methylation of amines by using efficient and easily accessible methylating reagents is highly desired yet remains a significant challenge. Herein, we report the selective N-dimethylation of different functional amines with different functional aldehydes under easy-to-handle and industrially applicable conditions using carbon-supported Ru nanoparticles (Ru/C) as a heterogeneous catalyst. A broad spectrum of amines could be efficiently converted to their corresponding N,N-dimethyl amines with good compatibility of various functional groups. This method is widely applicable to N-dimethylation of primary amines including aromatic, aliphatic amines with formaldehyde, and synthesis of tertiary amines from primary, secondary amines with different functional aldehydes. The advantage of this newly described method includes operational simplicity, high turnover number, the ready availability of the catalyst, and good functional group compatibility. This Ru/C catalyzed N-dimethylation reaction possibly proceeds through a two-step N-methylation reaction process.
Collapse
Affiliation(s)
- Jianguo Liu
- Key
Laboratory of Energy Thermal Conversion and Control of Ministry of
Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
- Dalian
National Laboratory for Clean Energy, Chinese
Academy of Sciences, Dalian 116023, P. R. China
| | - Yanpei Song
- CAS
Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory
of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Xiang Wu
- CAS
Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory
of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Longlong Ma
- Key
Laboratory of Energy Thermal Conversion and Control of Ministry of
Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
- CAS
Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory
of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| |
Collapse
|
9
|
Ansari TN, Sharma S, Bora PP, Ogulu D, Parmar S, Gallou F, Kozlowski PM, Handa S. Photoassisted Charge Transfer Between DMF and Substrate: Facile and Selective N,N-Dimethylamination of Fluoroarenes. CHEMSUSCHEM 2021; 14:2704-2709. [PMID: 33974355 DOI: 10.1002/cssc.202100761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/10/2021] [Indexed: 06/12/2023]
Abstract
A reversible Van der Waals complex formation between the electron-deficient fluorinated aromatic ring and N,N-dimethylformamide (DMF) molecules followed by light irradiation resulted in charge transfer (CT) process. The complex was stabilized by ammonium formate and further decomposed to form the C-N bond. Control experiments revealed that the simultaneous SN Ar pathway also contributes to product formation. This methodology is mild, metal-free, and effective for the amination of a variety of substrates. The reproducibility of this methodology was also verified on gram-scale reactions. The CT states were supported by control UV/Vis spectroscopy and computational studies.
Collapse
Affiliation(s)
- Tharique N Ansari
- Department of Chemistry, University of Louisville, 40292, Louisville, Kentucky, United States
| | - Sudripet Sharma
- Department of Chemistry, University of Louisville, 40292, Louisville, Kentucky, United States
| | - Pranjal P Bora
- Department of Chemistry, University of Louisville, 40292, Louisville, Kentucky, United States
| | - Deborah Ogulu
- Department of Chemistry, University of Louisville, 40292, Louisville, Kentucky, United States
| | - Saurav Parmar
- Department of Chemistry, University of Louisville, 40292, Louisville, Kentucky, United States
| | | | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, 40292, Louisville, Kentucky, United States
| | - Sachin Handa
- Department of Chemistry, University of Louisville, 40292, Louisville, Kentucky, United States
| |
Collapse
|
10
|
|
11
|
Abstract
The reductive amination, the reaction of an aldehyde or a ketone with ammonia or an amine in the presence of a reducing agent and often a catalyst, is an important amine synthesis and has been intensively investigated in academia and industry for a century. Besides aldehydes, ketones, or amines, starting materials have been used that can be converted into an aldehyde or ketone (for instance, carboxylic acids or organic carbonate or nitriles) or into an amine (for instance, a nitro compound) in the presence of the same reducing agent and catalyst. Mechanistically, the reaction starts with a condensation step during which the carbonyl compound reacts with ammonia or an amine, forming the corresponding imine followed by the reduction of the imine to the alkyl amine product. Many of these reduction steps require the presence of a catalyst to activate the reducing agent. The reductive amination is impressive with regard to the product scope since primary, secondary, and tertiary alkyl amines are accessible and hydrogen is the most attractive reducing agent, especially if large-scale product formation is an issue, since hydrogen is inexpensive and abundantly available. Alkyl amines are intensively produced and use fine and bulk chemicals. They are key functional groups in many pharmaceuticals, agro chemicals, or materials. In this review, we summarize the work published on reductive amination employing hydrogen as the reducing agent. No comprehensive review focusing on this subject has been published since 1948, albeit many interesting summaries dealing with one or the other aspect of reductive amination have appeared. Impressive progress in using catalysts based on earth-abundant metals, especially nanostructured heterogeneous catalysts, has been made during the early development of the field and in recent years.
Collapse
Affiliation(s)
- Torsten Irrgang
- Inorganic Chemistry II - Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| | - Rhett Kempe
- Inorganic Chemistry II - Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
12
|
Meng J, Xia HM, Xu AQ, Wang YF, Wang Z, Zhang FL. Selective N-monomethylation of primary anilines with the controllable installation of N-CH2D, N-CHD2, and N-CD3 units. Org Biomol Chem 2020; 18:4922-4926. [DOI: 10.1039/d0ob01054e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The selective N-monomethylation of primary anilines with the controllable installation of N-CH2D, N-CHD2, and N-CD3 units was realized by using the amine-borane/N,N-dimethylformamide (DMF) system as the methyl precursor.
Collapse
Affiliation(s)
- Jing Meng
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Hui-Min Xia
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- China
| | - Ai-Qing Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- China
| | - Yi-Feng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- China
| | - Zhijuan Wang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Feng-Lian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- China
| |
Collapse
|
13
|
Murugesan K, Senthamarai T, Chandrashekhar VG, Natte K, Kamer PCJ, Beller M, Jagadeesh RV. Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines. Chem Soc Rev 2020; 49:6273-6328. [DOI: 10.1039/c9cs00286c] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Catalytic reductive aminations using molecular hydrogen represent an essential and widely used methodology for the synthesis of different kinds of amines.
Collapse
Affiliation(s)
| | | | | | - Kishore Natte
- Chemical and Material and Sciences Division
- CSIR-Indian Institute of Petroleum
- Dehradun-248005
- India
| | | | | | | |
Collapse
|
14
|
González-Lainez M, Jiménez MV, Passarelli V, Pérez-Torrente JJ. Effective N-methylation of nitroarenes with methanol catalyzed by a functionalized NHC-based iridium catalyst: a green approach to N-methyl amines. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00707b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An Ir–NHC compound catalyzes the borrowing-hydrogen reduction of nitroarenes into N-methyl amines with methanol through a direct mechanism.
Collapse
Affiliation(s)
- Miguel González-Lainez
- Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea-ISQCH
- Universidad de Zaragoza – CSIC
- 50009 Zaragoza
- Spain
| | - M. Victoria Jiménez
- Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea-ISQCH
- Universidad de Zaragoza – CSIC
- 50009 Zaragoza
- Spain
| | - Vincenzo Passarelli
- Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea-ISQCH
- Universidad de Zaragoza – CSIC
- 50009 Zaragoza
- Spain
- Centro Universitario de la Defensa
| | - Jesús J. Pérez-Torrente
- Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea-ISQCH
- Universidad de Zaragoza – CSIC
- 50009 Zaragoza
- Spain
| |
Collapse
|
15
|
Synergistic catalysis of Cu+/Cu0 for efficient and selective N-methylation of nitroarenes with para-formaldehyde. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
16
|
Patel HA, Rawat M, Patel AL, Bedekar AV. Celite-Polyaniline supported palladium catalyst for chemoselective hydrogenation reactions. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4767] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Heta A. Patel
- Department of Chemistry, Faculty of Science, M. S. University of Baroda; Vadodara 390 002 India
| | - Maitreyee Rawat
- Department of Chemistry, Faculty of Science, M. S. University of Baroda; Vadodara 390 002 India
| | - Arun L. Patel
- Department of Chemistry, Faculty of Science, M. S. University of Baroda; Vadodara 390 002 India
| | - Ashutosh V. Bedekar
- Department of Chemistry, Faculty of Science, M. S. University of Baroda; Vadodara 390 002 India
| |
Collapse
|
17
|
Benitez-Medina GE, García JJ. Hydrogenation and N-alkylation of anilines and imines via transfer hydrogenation with homogeneous nickel compounds. Dalton Trans 2019; 48:17579-17587. [DOI: 10.1039/c9dt04111g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nickel-catalyzed N-alkylation of a variety of arylamines via transfer hydrogenation in the absence of pressurized hydrogen and basic or acidic additives was achieved in a tandem reaction.
Collapse
Affiliation(s)
| | - Juventino J. García
- Facultad de Química
- Universidad Nacional Autónoma de México
- México City 04510
- Mexico
| |
Collapse
|
18
|
Wang H, Huang Y, Jiang Q, Dai X, Shi F. Reductive N-methylation of quinolines with paraformaldehyde and H2 for sustainable synthesis of N-methyl tetrahydroquinolines. Chem Commun (Camb) 2019; 55:3915-3918. [DOI: 10.1039/c8cc10309g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-pot reductive N-methylation of quinolines with paraformaldehyde and H2 over Pd/C catalyst was developed for the synthesis of N-methyl-1,2,3,4-tetrahydroquinolines.
Collapse
Affiliation(s)
- Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Yongji Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Qi Jiang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Xingchao Dai
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| |
Collapse
|
19
|
Lator A, Gaillard S, Poater A, Renaud JL. Well-Defined Phosphine-Free Iron-Catalyzed N-Ethylation and N-Methylation of Amines with Ethanol and Methanol. Org Lett 2018; 20:5985-5990. [PMID: 30234993 DOI: 10.1021/acs.orglett.8b02080] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An iron(0) complex bearing a cyclopentadienone ligand catalyzed N-methylation and N-ethylation of aryl and aliphatic amines with methanol or ethanol in mild and basic conditions through a hydrogen autotransfer borrowing process is reported. A broad range of aromatic and aliphatic amines underwent mono- or dimethylation in high yields. DFT calculations suggest molecular hydrogen acts not only as a reducing agent but also as an additive to displace thermodynamic equilibria.
Collapse
Affiliation(s)
- Alexis Lator
- Normandie Université, LCMT, ENSICAEN, UNICAEN, CNRS , 6 boulevard du Maréchal Juin , 14000 Caen , France
| | - Sylvain Gaillard
- Normandie Université, LCMT, ENSICAEN, UNICAEN, CNRS , 6 boulevard du Maréchal Juin , 14000 Caen , France
| | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC) , Universitat de Girona , c/Ma Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Jean-Luc Renaud
- Normandie Université, LCMT, ENSICAEN, UNICAEN, CNRS , 6 boulevard du Maréchal Juin , 14000 Caen , France
| |
Collapse
|
20
|
Liu Z, Yang Z, Yu X, Zhang H, Yu B, Zhao Y, Liu Z. Efficient Cobalt-Catalyzed Methylation of Amines Using Methanol. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701044] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhenghui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Zhenzhen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| | - Xiaoxiao Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Hongye Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| | - Bo Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| | - Yanfei Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| |
Collapse
|
21
|
Wang H, Huang Y, Dai X, Shi F. N-Monomethylation of amines using paraformaldehyde and H2. Chem Commun (Camb) 2017; 53:5542-5545. [DOI: 10.1039/c7cc02314f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The selective N-monomethylation of amines is an important topic in fine chemical synthesis.
Collapse
Affiliation(s)
- Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Centre for Green Chemistry and Catalysis
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
| | - Yongji Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Centre for Green Chemistry and Catalysis
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
| | - Xingchao Dai
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Centre for Green Chemistry and Catalysis
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Centre for Green Chemistry and Catalysis
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
| |
Collapse
|
22
|
Su J, Li X, Chen Y, Cui Y, Xu J, Qian C, Chen X. N-Methylation of amines with methanol in a hydrogen free system on a combined Al2O3–mordenite catalyst. RSC Adv 2016. [DOI: 10.1039/c6ra07998a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
N-Methylation of primary or second amines with methanol is a green path for the synthesis of N-methyl amines.
Collapse
Affiliation(s)
- Jiahui Su
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xungang Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yunbin Chen
- Zhejiang Jianye Chemical Co. Ltd
- Hangzhou 311600
- China
| | - Yuancun Cui
- Zhejiang Jianye Chemical Co. Ltd
- Hangzhou 311600
- China
| | - Jingwei Xu
- Zhejiang Jianye Chemical Co. Ltd
- Hangzhou 311600
- China
| | - Chao Qian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xinzhi Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
23
|
Cabrero-Antonino JR, Adam R, Junge K, Beller M. A general protocol for the reductive N-methylation of amines using dimethyl carbonate and molecular hydrogen: mechanistic insights and kinetic studies. Catal Sci Technol 2016. [DOI: 10.1039/c6cy01401a] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and selective ruthenium-catalyzed reductive N-methylation of primary and secondary aromatic and aliphatic amines using dimethyl carbonate as a C1 source and molecular hydrogen as a reducing agent is reported for the first time.
Collapse
Affiliation(s)
| | - Rosa Adam
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- 18059 Rostock
- Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- 18059 Rostock
- Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- 18059 Rostock
- Germany
| |
Collapse
|
24
|
Ge X, Pan J, Chen X, Qian C, Zhou S. Mechanism aspects of the hydrogenation of acrylonitrile on Ni and Pd surfaces. RSC Adv 2016. [DOI: 10.1039/c6ra09295k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A combined experimental and theoretical investigation on the hydrogenation of acrylonitrile catalyzed by Ni and Pd is presented.
Collapse
Affiliation(s)
- Xin Ge
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Jiongbin Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Xinzhi Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Chao Qian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Shaodong Zhou
- Institut für Chemie
- Technische Universität Berlin
- Berlin
- Germany
| |
Collapse
|
25
|
Dang TT, Ramalingam B, Seayad AM. Efficient Ruthenium-Catalyzed N-Methylation of Amines Using Methanol. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00606] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tuan Thanh Dang
- Organic Chemistry, Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, #07-01 Neuros, Singapore 138665
| | - Balamurugan Ramalingam
- Organic Chemistry, Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, #07-01 Neuros, Singapore 138665
| | - Abdul Majeed Seayad
- Organic Chemistry, Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, #07-01 Neuros, Singapore 138665
| |
Collapse
|