1
|
Aghajani M, Dabiri M. Ultrasound-assisted Cu(II) Strecker-functionalized organocatalyst for green azide-alkyne cycloaddition and Ullmann reactions. Sci Rep 2024; 14:12141. [PMID: 38802456 PMCID: PMC11130308 DOI: 10.1038/s41598-024-62826-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
A new aminonitrile-functionalized Fe3O4 has been synthesized via the Strecker reaction, the designed aminonitrile ligand on the surface of the magnetic core coordinated to copper(II) to obtain the final new catalyst. The fabricated nanocatalyst was characterized by Fourier transform Infrared (FT-IR), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-ray spectroscopy (EDX), Transmission Electron Microscopy (TEM), Vibrating-Sample Magnetometer (VSM), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), and Thermogravimetric Analysis (TGA). The high tendency of nitrogens in the aminonitrile functional group to make a complex with Cu(II) has caused the practical activity of this nucleus in this catalyst. This nanocatalyst performance was investigated in azide-alkyne Huisgen cycloaddition (3 + 2) reaction for achieving to 1,4-disubstituted 1,2,3-triazoles in water as a green media at room temperature. In another try, Classic Ullmann Reaction was investigated for the synthesis of biaryls at 85 °C promoted by ultrasonic condition (37 kHz). The reaction scope was explored using different reactants and the results of using this developed catalytic system demonstrated its capacity to reduce the reaction time and enhance the reaction efficiency to provide good to excellent product yield. Conversely, the simple recycling and reusability of this catalyst for at least six times without any noticeable leaching of copper makes it a potential future catalyst for synthesizing such compounds.
Collapse
Affiliation(s)
- Mahyar Aghajani
- Department of Organic Chemistry and Oil, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, 1983969411, Islamic Republic of Iran.
| | - Minoo Dabiri
- Department of Organic Chemistry and Oil, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, 1983969411, Islamic Republic of Iran.
| |
Collapse
|
2
|
Pereira GR, Lopes RP, Wang W, Guimarães T, Teixeira RR, Astruc D. Triazole-functionalized hydrochar-stabilized Pd nanocatalyst for ullmann coupling. CHEMOSPHERE 2022; 308:136250. [PMID: 36057359 DOI: 10.1016/j.chemosphere.2022.136250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Biomass valorization is essential, particularly in emerging countries. Here, hydrochar from arabica coffee straw was functionalized with a triazole group (HD-TRz) for use as a support of palladium nanoparticles (PdNPs-HD-TRz) applied in the Ullmann coupling reaction for the first time. It provided remarkably excellent selectivities, conversions at a temperature as low as 45 °C and catalyst recyclability, surpassing previous literature performances. Hydrochar was obtained by one-pot reaction via hydrothermal synthesis, using NaOH solution as activating agent and functionalized with a 1,3-triazole group by CuAAC "click" reaction. The PdNPs were prepared via reduction of hydrochar-bound Pd(II) using NaBH4. Hydrochar functionalization was monitored by infrared spectroscopy, and X-ray diffraction (XRD) allowed to observe carbon and palladium planes in hydrochar and PdNPs HD-TRz structures. The PdNPs presented a spherical shape with 2.1 ± 0.1 nm size, homogeneously distributed in the carbon coverslips. The HD-TRz-supported PdNPs were used as a catalyst in the Ullmann reaction of iodobenzene, using ethanol as solvent with 100% of conversion and 91% selectivity at 45 °C. The material was reused, presenting 100% of conversion and selectivities of 92, 84 and 73% for the 1st, 2nd and 3rd cycle, respectively. The scope of the reaction was expanded to other molecules showing the potential of this and other triazole-hydrochar-supported nanocatalysts.
Collapse
Affiliation(s)
| | | | - Wenjuan Wang
- Université de Bordeaux, ISM, UMR CNRS 5255, Talence 33405 Cedex, France
| | - Tiago Guimarães
- Federal University of Viçosa, Chemistry Department-Viçosa/MG, Brazil
| | | | - Didier Astruc
- Université de Bordeaux, ISM, UMR CNRS 5255, Talence 33405 Cedex, France
| |
Collapse
|
3
|
Recent Advances in Graphene and Graphene‐Based Heterogeneous Nanocatalysts: C−C And C−Y Coupling Reactions in Liquid Phase. ChemistrySelect 2022. [DOI: 10.1002/slct.202202291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Recent green synthetic approaches toward Ullmann reaction: a review. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Astruc D. On the Roles of Electron Transfer in Catalysis by Nanoclusters and Nanoparticles. Chemistry 2021; 27:16291-16308. [PMID: 34427365 DOI: 10.1002/chem.202102477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 01/09/2023]
Abstract
Electron transfer plays a major role in chemical reactions and processes, and this is particularly true of catalysis by nanomaterials. The advent of metal nanoparticle (NP) catalysts, recently including atomically precise nanoclusters (NCs) as parts of nanocatalyst devices has brought increased control of the relationship between NP and NC structures and their catalytic functions. Consequently, the molecular definition of these new nanocatalysts has allowed a better understanding and management of various kinds of electron transfer involved in the catalytic processes. This Minireview brings a chemist's view of several major aspects of electron-transfer functions concerning NPs and NCs in catalytic processes. Particular focus concerns the role of NPs and NCs as electron reservoirs and light-induced antenna in catalytic processes from H2 generation to more complex reactions and sustainable energy production.
Collapse
Affiliation(s)
- Didier Astruc
- Univ. Bordeaux, ISM UMR N°5801, 351 Cours de la Libération, 33405, Talence Cedex, France
| |
Collapse
|
6
|
Amirmahani N, Rashidi M, Mahmoodi NO. Synthetic application of gold complexes on magnetic supports. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Najmeh Amirmahani
- Department of ChemistryFaculty of Science, University of Guilan, University Campus 2 Rasht Iran
- Environmental Health Engineering Research CenterKerman University of Medical Sciences Kerman Iran
| | - Mohsen Rashidi
- Department of Chemistry, Faculty of ScienceShahid Bahonar University of Kerman Kerman Iran
| | - Nosrat O. Mahmoodi
- Department of ChemistryFaculty of Science, University of Guilan, University Campus 2 Rasht Iran
| |
Collapse
|
7
|
Shariatipour M, Salamatmanesh A, Jadidi Nejad M, Heydari A. Imidazole-aryl coupling reaction via C H bond activation catalyzed by palladium supported on modified magnetic reduced graphene oxide in alkaline deep eutectic solvent. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105890] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
8
|
Jiang J, Du L, Ding Y. Aryl-Aryl Bond Formation by Ullmann Reaction: From Mechanistic Aspects to Catalyst. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x15666181031111117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aryl-aryl bond formation is one of the most important tools in modern organic synthesis.
Therefore, there is a high level of interest to develop green, effective reaction system to obtain biaryls.
This review summarized the recent advances in the metal-catalyzed Ullmann reaction in which
the aryl-aryl bond was formed directly. Furthermore, different types of catalytic mechanisms, especially
the surface reaction, have been summarized to help the design of the catalyst.
Collapse
Affiliation(s)
- Jie Jiang
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Liyong Du
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yuqiang Ding
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
9
|
Wang W, Chen S, Guisasola Cal E, Martínez Moro M, Moya S, Coy E, Wang C, Hamon JR, Astruc D. ZIF-8-based vs. ZIF-8-derived Au and Pd nanoparticles as efficient catalysts for the Ullmann homocoupling reaction. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00831a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
On comparing ZIF-8-based and ZIF-8-derived gold and palladium nanocatalysts, they were found to be very efficient for the optimized Ullmann coupling of iodoarenes in DMF.
Collapse
Affiliation(s)
- Wenjuan Wang
- ISM
- UMR CNRS 5255
- Université de Bordeaux
- Talence 33405 Cedex
- France
| | - Shuang Chen
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials
- Anhui University
- Hefei
- China
| | | | - Marta Martínez Moro
- Soft Matter Nanotechnology Lab
- CIC biomaGUNE
- 20014 Donostia-San Sebastián
- Spain
| | - Sergio Moya
- Soft Matter Nanotechnology Lab
- CIC biomaGUNE
- 20014 Donostia-San Sebastián
- Spain
| | - Emerson Coy
- NanoBioMedical Centre
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
| | - Changlong Wang
- ISM
- UMR CNRS 5255
- Université de Bordeaux
- Talence 33405 Cedex
- France
| | - Jean-René Hamon
- Institut des Sciences Chimiques
- UMR CNRS 6226
- Université de Rennes 1
- 35042 Rennes Cedex
- France
| | - Didier Astruc
- ISM
- UMR CNRS 5255
- Université de Bordeaux
- Talence 33405 Cedex
- France
| |
Collapse
|
10
|
Movahed SK, Lehi NF, Dabiri M. Palladium nanoparticles supported on core-shell and yolk-shell Fe3O4@nitrogen doped carbon cubes as a highly efficient, magnetically separable catalyst for the reduction of nitroarenes and the oxidation of alcohols. J Catal 2018. [DOI: 10.1016/j.jcat.2018.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Pourjavadi A, Habibi Z. Palladium nanoparticle-decorated magnetic pomegranate peel-derived porous carbon nanocomposite as an excellent catalyst for Suzuki-Miyaura and Sonogashira cross-coupling reactions. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry; Sharif University of Technology; Tehran Iran
| | - Zahra Habibi
- Polymer Research Laboratory, Department of Chemistry; Sharif University of Technology; Tehran Iran
| |
Collapse
|
12
|
Dabiri M, Alavioon SI, Movahed SK. Palladium Supported on Mesoporous Silica/Graphene Nanohybrid as a Highly Efficient and Reusable Heterogeneous Catalyst for C−H Functionalization. ChemistrySelect 2018. [DOI: 10.1002/slct.201800165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Minoo Dabiri
- Chemistry and Petroleum SciencesShahid Beheshti University, Tehran Province Tehran, District 1 Daneshjou Boulevard 1983969411 Iran
| | - Seyed Iman Alavioon
- Chemistry and Petroleum SciencesShahid Beheshti University, Tehran Province Tehran, District 1 Daneshjou Boulevard 1983969411 Iran
| | - Siyavash Kazemi Movahed
- Chemistry and Petroleum SciencesShahid Beheshti University, Tehran Province Tehran, District 1 Daneshjou Boulevard 1983969411 Iran
| |
Collapse
|
13
|
Dabiri M, Kashi SRB, Lehi NF, Bashiribod S. Synthesis of gold nanoparticles decorated on sulfonated three‐dimensional graphene nanocomposite and application as a highly efficient and recyclable heterogeneous catalyst for Ullmann homocoupling of aryl iodides and reduction of
p
‐nitrophenol. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Minoo Dabiri
- Faculty of ChemistryShahid Beheshti University Tehran 1983969411 Islamic Republic of Iran
| | | | - Noushin Farajinia Lehi
- Faculty of ChemistryShahid Beheshti University Tehran 1983969411 Islamic Republic of Iran
| | - Sahareh Bashiribod
- Faculty of ChemistryShahid Beheshti University Tehran 1983969411 Islamic Republic of Iran
| |
Collapse
|
14
|
Ullmann coupling of aryl chlorides in water catalyzed by palladium nanoparticles supported on amine-grafted porous aromatic polymer. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Nasrollahzadeh M, Issaabadi Z, Tohidi MM, Mohammad Sajadi S. Recent Progress in Application of Graphene Supported Metal Nanoparticles in C−C and C−X Coupling Reactions. CHEM REC 2017; 18:165-229. [DOI: 10.1002/tcr.201700022] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Mahmoud Nasrollahzadeh
- Department of Chemistry, Faculty of Science; University of Qom; Qom 37185-359 Iran
- Center of Environmental Researches; University of Qom; Qom Iran
| | - Zahra Issaabadi
- Department of Chemistry, Faculty of Science; University of Qom; Qom 37185-359 Iran
| | - Mohammad Mostafa Tohidi
- Center of Environmental Researches; University of Qom; Qom Iran
- Young Researchers and Elite Club, Buinzahra Branch; Islamic Azad University; Buinzahra, Qazvin Iran
| | - S. Mohammad Sajadi
- Department of Petroleum Geoscience, Faculty of Science; Soran University; PO Box 624 Soran, Kurdistan Regional Government Iraq
| |
Collapse
|
16
|
Canet-Ferrer J, Albella P, Ribera A, Usagre JV, Maier SA. Hybrid magnetite-gold nanoparticles as bifunctional magnetic-plasmonic systems: three representative cases. NANOSCALE HORIZONS 2017; 2:205-216. [PMID: 32260642 DOI: 10.1039/c6nh00225k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hybrid systems based on magnetite and gold nanoparticles have been extensively used as bifunctional materials for bio- and nano-technology. The properties of these composites are assumed to be closely related to the magnetite to gold mass ratio and to the geometry of the resulting hetero-structures. To illustrate this, we compare and analyze the optical and magnetic properties of core-shell, dumbbell-like dimers and chemical cross-linked pairs of magnetite and gold nanoparticles in detail. We explore how the combination of gold with magnetite can lead to an improvement of the optical properties of these systems, such as tunability, light scattering enhancement or an increase of the local electric field at the interface between magnetic and plasmonic constituents. We also show that although the presence of gold might affect the magnetic response of these hybrid systems, they still show good performance for magnetic applications; indeed the resulting magnetic properties are more dependent on the NP size dispersion. Finally, we identify technological constraints and discuss prospective routes for the development of further magnetic-plasmonic materials.
Collapse
Affiliation(s)
- J Canet-Ferrer
- Instituto de ciencia molecular (ICMol) de la Universidad de Valencia, c/ Catedrático José Beltrán Martínez num. 2, E46980 Paterna, Spain.
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Dabiri M, Vajargahy MP. PdCo bimetallic nanoparticles supported on three-dimensional graphene as a highly active catalyst for Sonogashira cross-coupling reaction. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3594] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Minoo Dabiri
- Faculty of Chemistry; Shahid Beheshti University; Tehran 1983969411 Islamic Republic of Iran
| | | |
Collapse
|
19
|
Fe3O4@RGO@Au@C Composite with Magnetic Core and Au Enwrapped in Double-Shelled Carbon: An Excellent Catalyst in the Reduction of Nitroarenes and Suzuki–Miyaura Cross-Coupling. Catal Letters 2016. [DOI: 10.1007/s10562-016-1792-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Gholinejad M, Ahmadi J, Nájera C. Silica Microparticles Supported Gold and Copper Ferrite Nanoparticles: A Magnetically Recyclable Bimetallic Catalyst for Sonogashira Reaction. ChemistrySelect 2016. [DOI: 10.1002/slct.201600049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mohammad Gholinejad
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); P. O. Box 45195-1159, Gavazang Zanjan 45137-6731 Iran
| | - Jahantab Ahmadi
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); P. O. Box 45195-1159, Gavazang Zanjan 45137-6731 Iran
| | - Carmen Nájera
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA).; Universidad de Alicante; Apdo. 99 E-03080- Alicante Spain
| |
Collapse
|
21
|
Dabiri M, Kasmaei M, Salari P, Movahed SK. Copper nanoparticle decorated three dimensional graphene with high catalytic activity for Huisgen 1,3-dipolar cycloaddition. RSC Adv 2016. [DOI: 10.1039/c5ra25317a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A copper nanoparticle decorated three-dimensional graphene nanocomposite was prepared at room temperature by reduction of copper sulfate using l-ascorbic acid as the reducing agent.
Collapse
Affiliation(s)
- Minoo Dabiri
- Faculty of Chemistry
- Shahid Beheshti University
- Tehran 1983969411
- Islamic Republic of Iran
| | - Melika Kasmaei
- Faculty of Chemistry
- Shahid Beheshti University
- Tehran 1983969411
- Islamic Republic of Iran
| | - Parinaz Salari
- Faculty of Chemistry
- Shahid Beheshti University
- Tehran 1983969411
- Islamic Republic of Iran
| | | |
Collapse
|
22
|
Zhao H, Mao G, Han H, Song J, Liu Y, Chu W, Sun Z. An effective and environment-friendly system for Cu NPs@RGO-catalyzed C–C homocoupling of aryl halides or arylboronic acids in ionic liquids under microwave irradiation. RSC Adv 2016. [DOI: 10.1039/c6ra04683e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cu NPs@RGO can effectively catalyze Ullmann C–C homocoupling of aryl halides and arylboronic acids under microwave irradiation in green solvent ionic liquid..
Collapse
Affiliation(s)
- Hongyan Zhao
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| | - Guijie Mao
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
| | - Huatao Han
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| | - Jinyi Song
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| | - Yang Liu
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| | - Wenyi Chu
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| | - Zhizhong Sun
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| |
Collapse
|
23
|
Karimi B, Mansouri F, Mirzaei HM. Recent Applications of Magnetically Recoverable Nanocatalysts in CC and CX Coupling Reactions. ChemCatChem 2015. [DOI: 10.1002/cctc.201403057] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|