1
|
Liu X, Xia Q, Zhou J, Li B, Zhao S, Chen L, Khan A, Li X, Xu A. Morphology-dependent activation of hydrogen peroxide with Cu 2O for tetracycline hydrochloride degradation in bicarbonate aqueous solution. J Environ Sci (China) 2024; 137:567-579. [PMID: 37980040 DOI: 10.1016/j.jes.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 11/20/2023]
Abstract
The design of efficient heterogeneous catalysts in bicarbonate-activated hydrogen peroxide systems (BAP) is a hot topic in wastewater treatment. In this work, Cu2O nanoparticles with different morphologies including cubic shape (c-Cu2O), octahedron shape (o-Cu2O) and spherical shape (s-Cu2O), were applied in BAP for the first time to degrade tetracycline hydrochloride (TC). Compared with Cu2+ ions and CuO, TC degradation was boosted in the presence of Cu2O in the BAP system, with the degradation rate following the order c-Cu2O > o-Cu2O > s-Cu2O. The morphology-dependent effects could be linearly correlated with the ratio of surface oxygen species (OS), but not with the surface area or Cu(I) ratio. The c-Cu2O catalyst with exposure of (100) facets contained 76.6% OS as the active site for H2O2 adsorption and activation, while the value was much lower for o-Cu2O and s-Cu2O with dominant (111) facets. The presence of HCO3- enhanced the interactions among Cu2O, H2O2 and TC, leading to facile oxidation of Cu(I) to Cu(II) by H2O2, and the formation of various reactive species such as hydroxyl radicals and Cu(III) contributed to TC degradation. This work provides a new method for enhancing H2O2 activation with heterogeneous catalysts by crystal facet engineering.
Collapse
Affiliation(s)
- Xiuying Liu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing and Finishing, Wuhan Textile University, Wuhan 430200, China
| | - Qianna Xia
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jiao Zhou
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Bowen Li
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Shuaiqi Zhao
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Long Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Aimal Khan
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xiaoxia Li
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Aihua Xu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing and Finishing, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
2
|
The Effect of a Dodecahedron-Shaped Structure on the Properties of an Enzyme. J Funct Biomater 2022; 13:jfb13040166. [PMID: 36278635 PMCID: PMC9590084 DOI: 10.3390/jfb13040166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/26/2022] Open
Abstract
In this research, the influence of a dodecahedron-shaped structure on the adsorption behavior of a horseradish peroxidase (HRP) enzyme glycoprotein onto mica substrates was studied. In the experiments, samples of an aqueous HRP solution were incubated at various distances (0.03 m, 2 m, 5 m, and control at 20 m) from the dodecahedron surface. After the incubation, the direct adsorption of HRP onto mica substrates immersed in the solutions was performed, and the mica-adsorbed HRP particles were visualized via atomic force microscopy (AFM). The effect of the increased HRP aggregation was only observed after the incubation of the enzyme solution at the 2 m distance from the dodecahedron. In addition, with respect to the control sample, spectrophotometric measurements revealed no change in the HRP enzymatic activity after the incubation at any of the distances studied. The results reported herein can be of use in the modeling of the possible influences of various spatial structures on biological objects in the development of biosensors and other electronic equipment.
Collapse
|
3
|
Yu X, Li X, Zhang S, Jia Y, Xu Z, Li X, Chen Z, Li Y. Ultrasensitive electrochemical detection of neuron-specific enolase based on spiny core-shell Au/Cu xO@CeO 2 nanocubes. Bioelectrochemistry 2020; 138:107693. [PMID: 33291001 DOI: 10.1016/j.bioelechem.2020.107693] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
As a specific biomarker, neuron-specific enolase (NSE) is an essential clinical indicator for diagnosing small cell lung cancer. In this paper, a sandwich-type electrochemical immunosensor was designed for the quantitative detection of NSE. AuPt nanoblock spherical nanoarchitectonics (AuPt NSNs), a bimetallic nanoparticle with a rugged morphology, were utilized as the substrate, which could enhance the electronic conduction and increase the immobilization capacity of the primary antibody (Ab1). Moreover, through a simple hydrothermal method, Au/CuxO@CeO2 was prepared as a spiny core-shell nanocube with cerium dioxide (CeO2) and gold nanoparticles (Au NPs) loading. The combination of Cu2O, CuO, and CeO2 showed favorable catalytic activity toward hydrogen peroxide (H2O2). Furthermore, the deposition of Au NPs on the spiny surface structure enhanced the specific surface area and biocompatibility, thereby rendering it more effective for loading the second antibody (Ab2). As the label material, the Au/CuxO@CeO2 achieved signal amplification and sensitive detection with the immunosensor. Under optimal conditions, the designed immunosensor possessed a broad linear range of 50 fg mL-1 to 100 ng mL-1 and a limit of detection of 31.3 fg mL-1, along with satisfactory performance in sensitivity, selectivity, and stability.
Collapse
Affiliation(s)
- Xiaodong Yu
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Xinjin Li
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| | - Shuan Zhang
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yilei Jia
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Zhen Xu
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Xiangye Li
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Zhiwei Chen
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yueyun Li
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| |
Collapse
|
4
|
Effect of Polyethylene Glycol 12000 on Morphology and Corrosion Behavior of TiO(OH)2/MnO2/PEG12000 Composite Electrodeposited on Pure Copper. CHEMISTRY AFRICA 2019. [DOI: 10.1007/s42250-019-00085-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
A Facile One-Step Synthesis of Cuprous Oxide/Silver Nanocomposites as Efficient Electrode-Modifying Materials for Nonenzyme Hydrogen Peroxide Sensor. NANOMATERIALS 2019; 9:nano9040523. [PMID: 30987101 PMCID: PMC6523812 DOI: 10.3390/nano9040523] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
Cuprous oxide/silver (Cu2O/Ag) nanocomposites were prepared via a facile one-step method and used to construct an electrochemical sensor for hydrogen peroxide (H2O2) detection. In this method, AgNO3 and Cu(NO3)2 were reduced to Cu2O/Ag nanocomposites by glucose in the presence of hexadecyl trimethyl ammonium bromide (CTAB) at a low temperature. The optimum condition was the molar ratio of silver nitrate and copper nitrate of 1:10, the temperature of 50 °C. Under this condition, Cu2O/Ag nanocomposites were obtained with uniformly distributed and tightly combined Cu2O and Ag nanoparticles. The size of Cu2O particles was less than 100 nm and that of Ag particles was less than 20 nm. Electrochemical experiments indicate that the Cu2O/Ag nanocomposites-based sensor possesses an excellent performance toward H2O2, showing a linear range of 0.2 to 4000 μM, a high sensitivity of 87.0 μA mM−1 cm−2, and a low detection limit of 0.2 μM. The anti-interference capability experiments indicate this sensor has good selectivity toward H2O2. Additionally, the H2O2 recovery tests of the sensor in diluted milk solution signify its potential application in routine H2O2 analysis.
Collapse
|
6
|
Surface-Controlled Photocatalysis and Chemical Sensing of TiO2, α-Fe2O3, and Cu2O Nanocrystals. CRYSTALS 2019. [DOI: 10.3390/cryst9030163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A relatively new approach to the design of photocatalytic and gas sensing materials is to use the shape-controlled nanocrystals with well-defined facets exposed to light or gas molecules. An abrupt increase in a number of papers on the synthesis and characterization of metal oxide semiconductors such as a TiO2, α-Fe2O3, Cu2O of low-dimensionality, applied to surface-controlled photocatalysis and gas sensing, has been recently observed. The aim of this paper is to review the work performed in this field of research. Here, the focus is on the mechanism and processes that affect the growth of nanocrystals, their morphological, electrical, and optical properties and finally their photocatalytic as well as gas sensing performance.
Collapse
|
7
|
Verma N, Kumar N. Synthesis and Biomedical Applications of Copper Oxide Nanoparticles: An Expanding Horizon. ACS Biomater Sci Eng 2019; 5:1170-1188. [DOI: 10.1021/acsbiomaterials.8b01092] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nishant Verma
- National Centre for Flexible Electronics, Indian Institute of Technology, Kanpur, Kalyanpur, Kanpur, Uttar Pradesh−208016, India
| | - Nikhil Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, G.E. Road, Opposite Science College, Raipur, Chhattisgarh−492010, India
| |
Collapse
|
8
|
Yan P, Zhong L, Wen X, Tang A. Fabrication of Cu2O/TiO2/sepiolite electrode for effectively detecting of H2O2. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.08.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Kumar JS, Murmu NC, Samanta P, Banerjee A, Ganesh RS, Inokawa H, Kuila T. Novel synthesis of a Cu2O–graphene nanoplatelet composite through a two-step electrodeposition method for selective detection of hydrogen peroxide. NEW J CHEM 2018. [DOI: 10.1039/c7nj04510g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optimized electrodeposition technique for the synthesis of Cu2O–graphene composite for H2O2sensing.
Collapse
Affiliation(s)
- J. Sharath Kumar
- Surface Engineering & Tribology
- Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute
- Durgapur-713209
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Naresh Chandra Murmu
- Surface Engineering & Tribology
- Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute
- Durgapur-713209
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Pranab Samanta
- Surface Engineering & Tribology
- Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute
- Durgapur-713209
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Amit Banerjee
- Research Institute of Electronics
- Shizuoka University
- Hamamatsu 432-8011
- Japan
| | - R. Sankar Ganesh
- Research Institute of Electronics
- Shizuoka University
- Hamamatsu 432-8011
- Japan
| | - Hiroshi Inokawa
- Research Institute of Electronics
- Shizuoka University
- Hamamatsu 432-8011
- Japan
| | - Tapas Kuila
- Surface Engineering & Tribology
- Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute
- Durgapur-713209
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
10
|
Facile Synthesis of Gold Nanoparticles with Alginate and Its Catalytic Activity for Reduction of 4-Nitrophenol and H₂O₂ Detection. MATERIALS 2017; 10:ma10050557. [PMID: 28772911 PMCID: PMC5459079 DOI: 10.3390/ma10050557] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 11/16/2022]
Abstract
Gold nanoparticles (AuNPs) were synthesized using a facile solvothermal method with alginate sodium as both reductant and stabilizer. Formation of AuNPs was confirmed by UV-vis spectroscopic analysis. The synthesized AuNPs showed a localized surface plasmon resonance at approximately 520-560 nm. The AuNPs were characterized using transmission electron microscopy, X-ray diffraction and dynamic light scattering. Transmission electron microscopy revealed that the AuNPs were mostly nanometer-sized spherical particles. Powder X-ray diffraction analysis proved the formation of face-centered cubic structure of Au. Catalytic reduction of 4-nitrophenol was monitored via spectrophotometry using AuNPs as catalyst, and further a non-enzymatic sensor was fabricated. The results demonstrated that AuNPs presented excellent catalytic activity and provided a sensitive response to H₂O₂ detection.
Collapse
|
11
|
Wen X, Long M, Tang A. Flake-like Cu 2 O on TiO 2 nanotubes array as an efficient nonenzymatic H 2 O 2 biosensor. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Lv J, Kong C, Hu X, Zhang X, Liu K, Yang S, Bi J, Liu X, Meng G, Li J, Yang Z, Yang S. Zinc ion mediated synthesis of cuprous oxide crystals for non-enzymatic glucose detection. J Mater Chem B 2017; 5:8686-8694. [DOI: 10.1039/c7tb01971h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Zn2+ was used to mediate the fabrication of Cu2O crystals with different glucose sensing performances depending on their structures.
Collapse
|
13
|
|
14
|
Deng SY, Zhang GY, Shan D, Liu YH, Wang K, Zhang XJ. Pyrocatechol violet-assisted in situ growth of copper nanoparticles on carbon nanotubes: The synergic effect for electrochemical sensing of hydrogen peroxide. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.12.139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Meng L, Jiang D, Xing C, Lü X, Chen M. Synthesis and size-dependent electrochemical nonenzymatic H2O2 sensing of cuprous oxide nanocubes. RSC Adv 2015. [DOI: 10.1039/c5ra14373j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The smaller size Cu2O nanocubes can effectively increase the electrocatalytic active areas and subsequently promote electron transfer in the reduction of H2O2.
Collapse
Affiliation(s)
- Lingyu Meng
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Deli Jiang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Chaosheng Xing
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Xiaomeng Lü
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Min Chen
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|
16
|
Soomro RA, Ibupoto ZH, Sirajuddin, Abro MI, Willander M. Controlled synthesis and electrochemical application of skein-shaped NiO nanostructures. J Solid State Electrochem 2014. [DOI: 10.1007/s10008-014-2700-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|