1
|
Patrylak LK, Konovalov SV, Yakovenko AV, Pertko OP, Povazhnyi VA, Voloshyna YG, Melnychuk OV, Filonenko MM. Micro–mesoporous kaolin-based zeolites as catalysts for glucose transformation into 5-hydroxymethylfurfural. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Zhao J, Liu R, Zhang Z, Xing Q, Chang H, Hou X, Wang Y. Tautomer distributions of N-acetyl-D-glucosamine in the condition of commonly utilized solvents and catalysts for biorefinery: NMR study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Li L, Zhang F, Tu R, Yu H, Wang H, Sun Y, Jiang E, Xu X. N,N-Dimethylformamide solvent assisted hydrothermal pretreatment of Chlorella for coproduction of sugar, nitrogenous compounds and carbon dots. BIORESOURCE TECHNOLOGY 2022; 344:126143. [PMID: 34678449 DOI: 10.1016/j.biortech.2021.126143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Microalgae are considered as a promising alternative to fossil fuels due to their ease of cultivation, short growth cycle and no occupation of cultivated land. In this study, N,N-Dimethylformamide (DMF) solvent was employed to assist hydrothermal pretreatment of Chlorella for coproduction of sugar, nitrogenous compounds and carbon dots (CDs). The effect of pretreatment conditions on the composition and pyrolysis bio-oil distribution of hydrothermal solid residues as well as CDs characteristic were investigated by varying the temperature (180-220 ℃) and reaction time (1-9 h). The results showed that pretreated residues had higher cellulose. And the yield of sugar and N-contained compounds reached 41.59% and 63.57% in the pyrolysis bio-oil of pretreated algae residues, respectively. Moreover, CDs obtained from hydrothermal solution fluoresced red under 365 nm excitation. The paper provides a new method for the complete utilization of microalgae.
Collapse
Affiliation(s)
- Linghao Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wush-an Road, Guangzhou 510642, China
| | - Fan Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wush-an Road, Guangzhou 510642, China
| | - Ren Tu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wush-an Road, Guangzhou 510642, China
| | - Haipeng Yu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wush-an Road, Guangzhou 510642, China
| | - Hong Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wush-an Road, Guangzhou 510642, China
| | - Yan Sun
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wush-an Road, Guangzhou 510642, China
| | - Enchen Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wush-an Road, Guangzhou 510642, China
| | - Xiwei Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wush-an Road, Guangzhou 510642, China.
| |
Collapse
|
4
|
Wei Z, Yao E, Cheng Y, Hu J, Liu Y. Insight into the dehydration of high-concentration fructose to 5-hydroxymethylfurfural in oxygen-containing polar aprotic solvents. NEW J CHEM 2022. [DOI: 10.1039/d2nj01339h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A high 5-HMF yield of 85.4% was achieved in polar aprotic oxygen-containing solvent with strong electrophilic maleic acid by quenching DHH.
Collapse
Affiliation(s)
- Zuojun Wei
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou 310027, P. R. China
- Institute of Zhejiang University–Quzhou, 78 Jinhua Boulevard North, Quzhou 324000, P. R. China
| | - En Yao
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou 310027, P. R. China
- Institute of Zhejiang University–Quzhou, 78 Jinhua Boulevard North, Quzhou 324000, P. R. China
| | - Yuran Cheng
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou 310027, P. R. China
- Institute of Zhejiang University–Quzhou, 78 Jinhua Boulevard North, Quzhou 324000, P. R. China
| | - Jinbo Hu
- College of Pharmaceutical Science, Zhejiang University of Technology, 1 GongDa Road, Wukang Street, Deqing County, HuZhou 313200, P. R. China
| | - Yingxin Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, 1 GongDa Road, Wukang Street, Deqing County, HuZhou 313200, P. R. China
| |
Collapse
|
5
|
Zhu L, Fu X, Hu Y, Hu C. Controlling the Reaction Networks for Efficient Conversion of Glucose into 5-Hydroxymethylfurfural. CHEMSUSCHEM 2020; 13:4812-4832. [PMID: 32667707 DOI: 10.1002/cssc.202001341] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Biomass-derived hexose constitutes the main component of lignocellulosic biomass for producing value-added chemicals and biofuels. However, the reaction network of hexose is complicated, which makes the highly selective synthesis of one particular product challenging in biorefinery. This Review focuses on the selective production of 5-hydroxymethylfurfural (HMF) from glucose on account of its potential significance as an important platform molecule. The complex reaction network involved in glucose-to-HMF transformations is briefly summarized. Special emphasis is placed on analyzing the complexities of feedstocks, intermediates, (side-) products, catalysts, solvents, and their impacts on the reaction network. The strategies and representative examples for adjusting the reaction pathway toward HMF by developing multifunctional catalysts and promoters, taking advantage of solvent effects and process intensification, and synergizing all measures are comprehensively discussed. An outlook is provided to highlight the challenges and opportunities faced in this promising field. It is expected to provide guidance to design practical catalytic processes for advancing HMF biorefinery.
Collapse
Affiliation(s)
- Liangfang Zhu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu, Sichuan, 610064, P.R. China
| | - Xing Fu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu, Sichuan, 610064, P.R. China
| | - Yexin Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu, Sichuan, 610064, P.R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu, Sichuan, 610064, P.R. China
| |
Collapse
|
6
|
Lin C, Wu H, Wang J, Huang J, Cao F, Zhuang W, Lu Y, Chen J, Jia H, Ouyang P. Preparation of 5-Hydroxymethylfurfural from High Fructose Corn Syrup Using Organic Weak Acid in Situ as Catalyst. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Changqu Lin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Hongli Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Junyi Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jinsha Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fei Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yanyu Lu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jiao Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
7
|
Zhang XY, Ou XY, Fu YJ, Zong MH, Li N. Efficient synthesis of 5-hydroxymethyl-2-furancarboxylic acid by Escherichia coli overexpressing aldehyde dehydrogenases. J Biotechnol 2020; 307:125-130. [DOI: 10.1016/j.jbiotec.2019.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/01/2019] [Accepted: 11/09/2019] [Indexed: 01/18/2023]
|
8
|
Shi K, Pedersen CM, Guo Z, Li Y, Zheng H, Qiao Y, Hu T, Wang Y. NMR studies of the tautomer distributions of d‑fructose in lower alcohols/DMSO‑d6. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Wu M, Zhou W, Pedersen CM, Ma H, Qiao Y, Guo X, Hou X, Wang Y. Isomeric distribution of monosaccharides in deep eutectic solvents: NMR study. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Tomaszewska J, Bieliński D, Binczarski M, Berlowska J, Dziugan P, Piotrowski J, Stanishevsky A, Witońska IA. Products of sugar beet processing as raw materials for chemicals and biodegradable polymers. RSC Adv 2018; 8:3161-3177. [PMID: 35541165 PMCID: PMC9077669 DOI: 10.1039/c7ra12782k] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/03/2018] [Indexed: 01/14/2023] Open
Abstract
This paper presents an overview of alternative uses for products of sugar beet processing, especially sucrose, as chemical raw materials for the production of biodegradable polymers. Traditionally, sucrose has not been considered as a chemical raw material, because of its use in the food industry and high sugar prices. Beet pulp and beetroot leaves have also not been considered as raw materials for chemical production processes until recently. However, current changes in the European sugar market could lead to falling demand and overproduction of sucrose. Increases in the production of white sugar will also increase the production of waste biomass, as a result of the processing of larger quantities of sugar beet. This creates an opportunity for the development of new chemical technologies based on the use of products of sugar beet processing as raw materials. Promising methods for producing functionalized materials include the acidic hydrolysis of sugars (sucrose, biomass polysaccharides), the catalytic dehydration of monosaccharides to HMF followed by catalytic oxidation of HMF to FDCA and polymerization to biodegradable polymers. The technologies reviewed in this article will be of interest both to industry and science.
Collapse
Affiliation(s)
- J Tomaszewska
- Institute of General and Ecological Chemistry, Lodz University of Technology 116 Zeromskiego Street Lodz 90-924 Poland +48 42 631 30 94
| | - D Bieliński
- Institute of Polymer & Dye Technology, Lodz University of Technology 12/16 Stefanowskiego Street Lodz 90-924 Poland
| | - M Binczarski
- Institute of General and Ecological Chemistry, Lodz University of Technology 116 Zeromskiego Street Lodz 90-924 Poland +48 42 631 30 94
| | - J Berlowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology 171/173 Wolczanska Street Lodz 90-924 Poland
| | - P Dziugan
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology 171/173 Wolczanska Street Lodz 90-924 Poland
| | - J Piotrowski
- National Sugar Company S.A. 12 John Paul II Avenue Warsaw 00-001 Poland
| | - A Stanishevsky
- Department of Physics, University of Alabama at Birmingham Birmingham AL 35294 USA
| | - I A Witońska
- Institute of General and Ecological Chemistry, Lodz University of Technology 116 Zeromskiego Street Lodz 90-924 Poland +48 42 631 30 94
| |
Collapse
|
11
|
Mika LT, Cséfalvay E, Németh Á. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chem Rev 2017; 118:505-613. [DOI: 10.1021/acs.chemrev.7b00395] [Citation(s) in RCA: 662] [Impact Index Per Article: 94.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- László T. Mika
- Department
of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary
| | - Edit Cséfalvay
- Department
of Energy Engineering, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Áron Németh
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest 1111, Hungary
| |
Collapse
|
12
|
Wei Z, Lou J, Su C, Guo D, Liu Y, Deng S. An Efficient and Reusable Embedded Ru Catalyst for the Hydrogenolysis of Levulinic Acid to γ-Valerolactone. CHEMSUSCHEM 2017; 10:1720-1732. [PMID: 28328085 DOI: 10.1002/cssc.201601769] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/11/2017] [Indexed: 06/06/2023]
Abstract
To achieve a higher activity and reusability of a Ru-based catalyst, Ru nanoparticles were embedded in N-doped mesoporous carbon through a hard-template method. The catalyst showed excellent catalytic performance (314 h-1 turnover frequency) and recyclability (reusable five times with 3 % activity loss) for the hydrogenolysis of levulinic acid to γ-valerolactone. Compared with the mesoporous carbon without N-doping and conventional activated carbon, the introduction of N-dopant effectively improved the dispersion of Ru nanoparticles, decreased the average size of Ru nanoparticles to as small as 1.32 nm, and improved the adsorption of levulinic acid, which contributed to the increase in the activity of the catalyst. Additionally, the embedding method increased the interaction between Ru nanoparticles and carbon support in contrast with the conventional impregnation method, thus preventing the Ru nanoparticles from migration, aggregation, and leaching from the carbon surface and therefore increasing the reusability of the catalyst.
Collapse
Affiliation(s)
- Zuojun Wei
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, 310027, P.R. China
| | - Jiongtao Lou
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, 310027, P.R. China
| | - Chuanmin Su
- Research and Development Base of Catalytic Hydrogenation, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Xiacheng District, Hangzhou, 310014, P.R. China
| | - Dechao Guo
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, 310027, P.R. China
| | - Yingxin Liu
- Research and Development Base of Catalytic Hydrogenation, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Xiacheng District, Hangzhou, 310014, P.R. China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, 510 E. Tyler Mall, Tempe, AZ, 85287 ENGRC 279, USA
| |
Collapse
|
13
|
Motokucho S, Morikawa H, Nakatani H, Noordover BA. Efficient and environmental-friendly dehydration of fructose to 5-hydroxymethyl-2-furfural in water under high pressure of CO2. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.09.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Wei Z, Lou J, Li Z, Liu Y. One-pot production of 2,5-dimethylfuran from fructose over Ru/C and a Lewis–Brønsted acid mixture in N,N-dimethylformamide. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00275g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-pot process for the production of 2,5-dimethylfuran from fructose by using Ru/C and a Lewis–Brønsted acid mixture as catalysts.
Collapse
Affiliation(s)
- Zuojun Wei
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- PR China
| | - Jiongtao Lou
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- PR China
| | - Zhenbin Li
- Research and Development Base of Catalytic Hydrogenation
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- PR China
| | - Yingxin Liu
- Research and Development Base of Catalytic Hydrogenation
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- PR China
| |
Collapse
|