1
|
Yoshimune W, Kikkawa N, Yoneyama H, Takahashi N, Minami S, Akimoto Y, Mitsuoka T, Kawaura H, Harada M, Yamada NL, Aoki H. Interfacial Distribution of Nafion Ionomer Thin Films on Nitrogen-Modified Carbon Surfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53744-53754. [PMID: 36416068 PMCID: PMC10806603 DOI: 10.1021/acsami.2c14574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Chemically modified carbon supports for the cathode catalyst layers of polymer electrolyte fuel cells (PEFCs) show considerable promise for boosting the oxygen reduction reaction. This study evaluated the ionomer distribution of Nafion ionomer thin films on nitrogen (N)-modified carbon surfaces along their depth direction. Neutron reflectivity (NR) measurements performed using the double-contrast technique with H2O and D2O revealed that the introduction of N functional groups to carbon thin films promoted ionomer adsorption onto the surface under wet conditions (22 °C, 85% relative humidity). Molecular dynamics (MD) simulations conducted to verify the origin of the robust contact between the ionomer and N-modified carbon surface revealed an ionomer adsorption mechanism on the N-modified carbon surfaces, which involved Coulomb interactions between the positively charged carbon surface and the ionomer side chains with negatively charged sulfonic acid groups. The positive surface charge, which was determined using the contents of the N functional groups estimated by X-ray photoelectron spectroscopy, was found to be sufficient as an impetus for ionomer adsorption. This strategy involving NR measurements and MD simulations can provide insights into the solid-ionomer interfacial structures in a cathode catalyst layer and can therefore be extensively employed in studies on PEFCs.
Collapse
Affiliation(s)
- Wataru Yoshimune
- Toyota
Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute, Aichi480-1192, Japan
| | - Nobuaki Kikkawa
- Toyota
Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute, Aichi480-1192, Japan
| | - Hiroaki Yoneyama
- Toyota
Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute, Aichi480-1192, Japan
| | - Naoko Takahashi
- Toyota
Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute, Aichi480-1192, Japan
| | - Saori Minami
- Toyota
Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute, Aichi480-1192, Japan
| | - Yusuke Akimoto
- Toyota
Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute, Aichi480-1192, Japan
| | - Takuya Mitsuoka
- Toyota
Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute, Aichi480-1192, Japan
| | - Hiroyuki Kawaura
- Toyota
Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute, Aichi480-1192, Japan
| | - Masashi Harada
- Toyota
Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute, Aichi480-1192, Japan
| | - Norifumi L. Yamada
- Institute
of Materials Structure Science, High Energy
Accelerator Research Organization, Naka-gun, Ibaraki319-1106, Japan
| | - Hiroyuki Aoki
- Institute
of Materials Structure Science, High Energy
Accelerator Research Organization, Naka-gun, Ibaraki319-1106, Japan
- Materials
and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Naka-gun, Ibaraki319-1195, Japan
| |
Collapse
|
2
|
Truszkowska A, Boldini A, Porfiri M. Plating of Ion‐Exchange Membranes: A Molecular Dynamics Study. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Agnieszka Truszkowska
- Mechanical and Aerospace Engineering Tandon School of Engineering New York University Six MetroTech Center Brooklyn NY 11201 USA
- Center for Urban Science and Progress Tandon School of Engineering New York University 370 Jay Street Brooklyn NY 11201 USA
- Chemical and Materials Engineering The University of Alabama in Huntsville 301 Sparkman Drive Huntsville AL 35899 USA
| | - Alain Boldini
- Mechanical and Aerospace Engineering Tandon School of Engineering New York University Six MetroTech Center Brooklyn NY 11201 USA
- Center for Urban Science and Progress Tandon School of Engineering New York University 370 Jay Street Brooklyn NY 11201 USA
| | - Maurizio Porfiri
- Mechanical and Aerospace Engineering Tandon School of Engineering New York University Six MetroTech Center Brooklyn NY 11201 USA
- Center for Urban Science and Progress Tandon School of Engineering New York University 370 Jay Street Brooklyn NY 11201 USA
- Biomedical Engineering Tandon School of Engineering New York University Six MetroTech Center Brooklyn NY 11201 USA
| |
Collapse
|
3
|
Jiménez-García JC, Olmos-Asar JA, Franceschini EA, Mariscal MM. Effect of Nafion content and hydration level on the electrochemical area of a Pt nanocatalyst in the triple-phase boundary. Phys Chem Chem Phys 2021; 23:27543-27551. [PMID: 34874379 DOI: 10.1039/d1cp03731e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Despite the great scientific effort, there are still some aspects of a polymeric membrane-based fuel cell (PEMFC) operation that are difficult to access experimentally. This is the case of the so-called triple-phase boundary (TPB), where the ionomer (commonly Nafion) interacts with the supported nanocatalyst (commonly Pt) and is key to the catalytic activity of the system. In this work, we use molecular dynamics simulations and electrochemical experiments on a Nafion/Pt/C system. We perform a systematic analysis, at an atomistic level, to evaluate the effect of several fundamental factors and their intercorrelation on the electrochemically active area (ECSA) of the catalysts. Our results reveal that at high Nafion contents, the catalyst utilization is affected due to the strong interaction between the sulfonic groups of the ionomer and the surface of the Pt nanoparticles (NPs). On the other hand, when the hydration level of the membrane decreases, the sulfonic groups have a greater occupation on the NP surface, covering the active area with hydrophobic Nafion chains and therefore increasing the inactive area. Voltammograms can corroborate our calculations. Overall, this investigation allows us to rationalize how the catalyst utilization is affected, which is an important step in establishing the relationship between the environment and the effectiveness and durability of the PEMFC system.
Collapse
Affiliation(s)
- Juan C Jiménez-García
- Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC) - CONICET, Córdoba, Argentina. .,Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jimena A Olmos-Asar
- Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC) - CONICET, Córdoba, Argentina. .,Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Esteban A Franceschini
- Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC) - CONICET, Córdoba, Argentina. .,Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marcelo M Mariscal
- Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC) - CONICET, Córdoba, Argentina. .,Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
4
|
Lock SSM, Lau KK, Jusoh N, Shariff AM, Yeong YF, Yiin CL, Ammar Taqvi SA. Physical property and gas transport studies of ultrathin polysulfone membrane from 298.15 to 328.15 K and 2 to 50 bar: atomistic molecular simulation and empirical modelling. RSC Adv 2020; 10:32370-32392. [PMID: 35516493 PMCID: PMC9056602 DOI: 10.1039/d0ra05836j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/24/2020] [Indexed: 01/19/2023] Open
Abstract
Elucidation of ultrathin polymeric membrane at the laboratory scale is complicated at different operating conditions due to limitation of instruments to obtain in situ measurement data of membrane physical properties. This is essential since their effects are reversible. In addition, tedious experimental work is required to collect gas transport data at varying operating conditions. Recently, we have proposed a validated Soft Confining Methodology for Ultrathin Films that can be used to simulate ultrathin polysulfone (PSF) membranes upon confinement limited to 308.15 K and 2 bars. In industry application, these ultrathin membranes are operated within 298.15–328.15 K and up to 50 bars. Therefore, our proposed methodology using computational chemistry has been adapted to circumvent limitation in experimental study by simulating ultrathin PSF membranes upon confinement at different operating temperatures (298.15 to 328.15 K) and pressures (2 to 50 bar). The effect of operating parameters towards non-bonded and potential energy, free volume, specific volume and gas transport data (e.g. solubility and diffusivity) for oxygen and nitrogen of the ultrathin films has been simulated and collected using molecular simulation. Our previous empirical equations that have been confined to thickness dependent gas transport properties have been modified to accommodate the effect of operating parameters. The empirical equations are able to provide a good quantitative characterization with R2 ≥ 0.99 consistently, and are able to be interpolated to predict gas transport properties within the range of operating conditions. The modified empirical model can be utilized in process optimization studies to determine optimal membrane design for typical membrane specifications and operating parameters used in industrial applications. Pioneering work to elucidate and model the effect of operating conditions on physical and transport properties of ultrathin membranes.![]()
Collapse
Affiliation(s)
- S S M Lock
- CO2 Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS 32610 Seri Iskandar Malaysia
| | - K K Lau
- CO2 Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS 32610 Seri Iskandar Malaysia
| | - Norwahyu Jusoh
- CO2 Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS 32610 Seri Iskandar Malaysia
| | - A M Shariff
- CO2 Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS 32610 Seri Iskandar Malaysia
| | - Y F Yeong
- CO2 Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS 32610 Seri Iskandar Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS) 94300 Kota Samarahan Sarawak Malaysia
| | - Syed Ali Ammar Taqvi
- Department of Chemical Engineering, NED University of Engineering and Technology Karachi 75270 Pakistan
| |
Collapse
|
5
|
Huang D, Li MJ, Song BY, Liu ZB. Structure and dynamics of microbial fuel cell catalyst layer. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Li GF, Yang D, Abel Chuang PY. Defining Nafion Ionomer Roles for Enhancing Alkaline Oxygen Evolution Electrocatalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02217] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guang-Fu Li
- Department of Mechanical Engineering, University of California, Merced, California 95343, United States
| | - Donglei Yang
- Department of Mechanical Engineering, University of California, Merced, California 95343, United States
| | - Po-Ya Abel Chuang
- Department of Mechanical Engineering, University of California, Merced, California 95343, United States
| |
Collapse
|
7
|
Sengupta S, Lyulin AV. Molecular Dynamics Simulations of Substrate Hydrophilicity and Confinement Effects in Capped Nafion Films. J Phys Chem B 2018; 122:6107-6119. [PMID: 29757641 PMCID: PMC5994720 DOI: 10.1021/acs.jpcb.8b03257] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/14/2018] [Indexed: 01/25/2023]
Abstract
Nafion nanocomposites for energy-related applications are being used extensively because of the attractive properties such as enhanced water retention, low unwanted crossover of electrolytes, and high proton conductivity. We present the results of the molecular dynamics modeling of Nafion films confined between two walls (substrates) of different polymer-wall interaction strengths and of different separation distances to model Nafion nanocomposites. Our goal is to provide insights into the effects of varying hydrophilicity and volume fraction of fillers/nanoparticles on the internal structure and water transport inside the Nafion membrane. The sulfur-sulfur radial distribution function first peak distance and the sulfur-oxygen (water) coordination number in the first hydration shell were negligibly affected by the wall (substrate) hydrophilicity or the film thickness. The Nafion side chains were found to bend toward the substrates with high hydrophilicity which is in qualitative agreement with existing experiments. The amount of bending was observed to reduce with increasing film thickness. However, the side-chain length did not show any noticeable variation with wall (substrate) hydrophilicity or film thickness. The water clusters became smaller and more isolated clusters emerged for highly hydrophilic substrates. In addition, the water cluster sizes showed a decreasing trend with decreasing film thickness in the case of hydrophilic substrates, which has also been observed in experiments of supported Nafion films. The in-plane water diffusion was enhanced considerably for hydrophilic substrates, and this mechanism has also been proposed previously in experiments. The in-plane water diffusion was also found to be a strong function of the substrate selectivity toward the hydrophilic phase. Our simulations can help provide more insights to experimentalists for choosing or modifying nanoparticles for Nafion nanocomposites.
Collapse
Affiliation(s)
- Soumyadipta Sengupta
- Theory
of Polymers and Soft Matter, Department of Applied Physics, and Center for Computational
Energy Research, Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Alexey V. Lyulin
- Theory
of Polymers and Soft Matter, Department of Applied Physics, and Center for Computational
Energy Research, Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
8
|
Transport in Proton Exchange Membranes for Fuel Cell Applications-A Systematic Non-Equilibrium Approach. MATERIALS 2017; 10:ma10060576. [PMID: 28772939 PMCID: PMC5552083 DOI: 10.3390/ma10060576] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 11/17/2022]
Abstract
We hypothesize that the properties of proton-exchange membranes for fuel cell applications cannot be described unambiguously unless interface effects are taken into account. In order to prove this, we first develop a thermodynamically consistent description of the transport properties in the membranes, both for a homogeneous membrane and for a homogeneous membrane with two surface layers in contact with the electrodes or holder material. For each subsystem, homogeneous membrane, and the two surface layers, we limit ourselves to four parameters as the system as a whole is considered to be isothermal. We subsequently analyze the experimental results on some standard membranes that have appeared in the literature and analyze these using the two different descriptions. This analysis yields relatively well-defined values for the homogeneous membrane parameters and estimates for those of the surface layers and hence supports our hypothesis. As demonstrated, the method used here allows for a critical evaluation of the literature values. Moreover, it allows optimization of stacked transport systems such as proton-exchange membrane fuel cell units where interfacial layers, such as that between the catalyst and membrane, are taken into account systematically.
Collapse
|
9
|
Influence of chemical composition and amount of intermixed ionomer in the catalyst on the oxygen reduction reaction characteristics. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3521-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Lock SS, Lau KK, Shariff AM, Yeong YF, Bustam MA. Computational insights on the role of film thickness on the physical properties of ultrathin polysulfone membranes. RSC Adv 2017. [DOI: 10.1039/c7ra07277e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A pioneering work to elucidate physical properties of ultrathin membrane films from atomistic point of view in Materials Studio.
Collapse
Affiliation(s)
- S. S. M. Lock
- Research Center for CO2 Capture
- Department of Chemical Engineering
- Universiti Teknologi PETRONAS
- Malaysia
| | - K. K. Lau
- Research Center for CO2 Capture
- Department of Chemical Engineering
- Universiti Teknologi PETRONAS
- Malaysia
| | - A. M. Shariff
- Research Center for CO2 Capture
- Department of Chemical Engineering
- Universiti Teknologi PETRONAS
- Malaysia
| | - Y. F. Yeong
- Research Center for CO2 Capture
- Department of Chemical Engineering
- Universiti Teknologi PETRONAS
- Malaysia
| | - M. A. Bustam
- Research Center for CO2 Capture
- Department of Chemical Engineering
- Universiti Teknologi PETRONAS
- Malaysia
| |
Collapse
|