1
|
Fibrous Separator with Surface Modification and Micro-Nano Fibers Lamination Enabling Fast Ion Transport for Lithium-Ion Batteries. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Kang SH, Jeong HY, Kim TH, Lee JY, Hong SK, Hong YT, Choi J, So S, Yoon SJ, Yu DM. Aluminum Diethylphosphinate-Incorporated Flame-Retardant Polyacrylonitrile Separators for Safety of Lithium-Ion Batteries. Polymers (Basel) 2022; 14:polym14091649. [PMID: 35566819 PMCID: PMC9100846 DOI: 10.3390/polym14091649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Herein, we developed polyacrylonitrile (PAN)-based nanoporous composite membranes incorporating aluminum diethylphosphinate (ADEP) for use as a heat-resistant and flame-retardant separator in high-performance and safe lithium-ion batteries (LIBs). ADEP is phosphorus-rich, thermally stable, and flame retardant, and it can effectively suppress the combustibility of PAN nanofibers. Nanofibrous membranes were obtained by electrospinning, and the content of ADEP varied from 0 to 20 wt%. From the vertical burning test, it was demonstrated that the flame retardancy of the composite membranes was enhanced when more than 5 wt% of ADEP was added to PAN, potentially increasing the safety level of LIBs. Moreover, the composite membrane showed higher ionic conductivity and electrolyte uptake (0.83 mS/cm and 137%) compared to those of commercial polypropylene (PP) membranes (Celgard 2400: 0.65 mS/cm and 63%), resulting from interconnected pores and the polar chemical composition in the composite membranes. In terms of battery performance, the composite membrane showed highly stable electrochemical and heat-resistant properties, including superior discharge capacity when compared to Celgard 2400, indicating that the PAN/ADEP composite membrane has the potential to be used as a heat-resistant and flame-retardant separator for safe and high-power LIBs.
Collapse
Affiliation(s)
- Seok Hyeon Kang
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (S.H.K.); (H.Y.J.); (T.H.K.); (J.Y.L.); (Y.T.H.)
- Department of Polymer Engineering, Chungnam National University, Daejeon 34134, Korea;
| | - Hwan Yeop Jeong
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (S.H.K.); (H.Y.J.); (T.H.K.); (J.Y.L.); (Y.T.H.)
| | - Tae Ho Kim
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (S.H.K.); (H.Y.J.); (T.H.K.); (J.Y.L.); (Y.T.H.)
| | - Jang Yong Lee
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (S.H.K.); (H.Y.J.); (T.H.K.); (J.Y.L.); (Y.T.H.)
| | - Sung Kwon Hong
- Department of Polymer Engineering, Chungnam National University, Daejeon 34134, Korea;
| | - Young Taik Hong
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (S.H.K.); (H.Y.J.); (T.H.K.); (J.Y.L.); (Y.T.H.)
| | - Jaewon Choi
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41566, Korea;
| | - Soonyong So
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (S.H.K.); (H.Y.J.); (T.H.K.); (J.Y.L.); (Y.T.H.)
- Correspondence: (S.S.); (S.J.Y.); (D.M.Y.)
| | - Sang Jun Yoon
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (S.H.K.); (H.Y.J.); (T.H.K.); (J.Y.L.); (Y.T.H.)
- Correspondence: (S.S.); (S.J.Y.); (D.M.Y.)
| | - Duk Man Yu
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (S.H.K.); (H.Y.J.); (T.H.K.); (J.Y.L.); (Y.T.H.)
- Correspondence: (S.S.); (S.J.Y.); (D.M.Y.)
| |
Collapse
|
3
|
Polyethylene Terephthalate-Based Materials for Lithium-Ion Battery Separator Applications: A Review Based on Knowledge Domain Analysis. INT J POLYM SCI 2021. [DOI: 10.1155/2021/6694105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
As the key material of lithium battery, separator plays an important role in isolating electrons, preventing direct contact between anode and cathode, and allowing free passage of lithium ions in the electrolyte. Polyethylene terephthalate (PET) has excellent mechanical, thermodynamic, and electrical insulation properties. This review aims to identify the research progress and development trends of PET-based material for separator application. We retrieved published papers (2004–2019) from the Scientific Citation Index Expanded (SCIE) database of the WoS with a topic search related to PET-based material for separator application. The research progress and development trends were analyzed based on the CiteSpace software of text mining and visualization.
Collapse
|
4
|
Pore-controlled polymer membrane with Mn (II) ion trapping effect for high-rate performance LiMn2O4 cathode. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4153-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Recent Advances in Poly(vinylidene fluoride) and Its Copolymers for Lithium-Ion Battery Separators. MEMBRANES 2018; 8:membranes8030045. [PMID: 30029489 PMCID: PMC6161240 DOI: 10.3390/membranes8030045] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 11/30/2022]
Abstract
The separator membrane is an essential component of lithium-ion batteries, separating the anode and cathode, and controlling the number and mobility of the lithium ions. Among the polymer matrices most commonly investigated for battery separators are poly(vinylidene fluoride) (PVDF) and its copolymers poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE), poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), and poly(vinylidene fluoride-cochlorotrifluoroethylene) (PVDF-CTFE), due to their excellent properties such as high polarity and the possibility of controlling the porosity of the materials through binary and ternary polymer/solvent systems, among others. This review presents the recent advances on battery separators based on PVDF and its copolymers for lithium-ion batteries. It is divided into the following sections: single polymer and co-polymers, surface modification, composites, and polymer blends. Further, a critical comparison between those membranes and other separator membranes is presented, as well as the future trends on this area.
Collapse
|
6
|
Yang S, Ma W, Wang A, Gu J, Yin Y. A core–shell structured polyacrylonitrile@poly(vinylidene fluoride-hexafluoro propylene) microfiber complex membrane as a separator by co-axial electrospinning. RSC Adv 2018; 8:23390-23396. [PMID: 35540150 PMCID: PMC9081596 DOI: 10.1039/c8ra02035c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/12/2018] [Indexed: 11/21/2022] Open
Abstract
A novel and facile core–shell structured polyacrylonitrile@poly (vinylidene fluoride-hexafluoro propylene) (PAN@PVDF-HFP) microfiber complex membrane was designed and fabricated via co-axial electrospinning, which was used as a separator in lithium-ion batteries. Poly(vinylidene fluoride-co-hexafluoro propene) (PVDF-HFP) and polyacrylonitrile (PAN) were used as the shell (outer) layer and core (inner), respectively. Structure, surface morphology, porosity, and thermal properties of the core–shell structured microfiber membranes were investigated. Compared with the traditional commercial porous polyethylene (PE) separator, the PAN@PVDF-HFP microfiber complex membranes exhibited higher porosity, superior thermal stability, better electrolyte wettability and higher ionic conductivity. As a consequence, batteries assembled with the PAN@PVDF-HFP microfiber complex membrane display better cycling stability and superior rate performance compared to those with the PE separator. A novel and facile core–shell structured polyacrylonitrile@poly (vinylidene fluoride-hexafluoro propylene) (PAN@PVDF-HFP) microfiber complex membrane was designed and fabricated via co-axial electrospinning.![]()
Collapse
Affiliation(s)
- Shuting Yang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
- National & Local Joint Engineering Laboratory for Motive Power and Key Materials
| | - Wenhao Ma
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
- National & Local Joint Engineering Laboratory for Motive Power and Key Materials
| | - Aili Wang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
- National & Local Joint Engineering Laboratory for Motive Power and Key Materials
| | - Jifeng Gu
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
- National & Local Joint Engineering Laboratory for Motive Power and Key Materials
| | - Yanhong Yin
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
- National & Local Joint Engineering Laboratory for Motive Power and Key Materials
| |
Collapse
|
7
|
Xiang Y, Li J, Lei J, Liu D, Xie Z, Qu D, Li K, Deng T, Tang H. Advanced Separators for Lithium-Ion and Lithium-Sulfur Batteries: A Review of Recent Progress. CHEMSUSCHEM 2016; 9:3023-3039. [PMID: 27667306 DOI: 10.1002/cssc.201600943] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/25/2016] [Indexed: 06/06/2023]
Abstract
Li-ion and Li-S batteries find enormous applications in different fields, such as electric vehicles and portable electronics. A separator is an indispensable part of the battery design, which functions as a physical barrier for the electrode as well as an electrolyte reservoir for ionic transport. The properties of the separators directly influence the performance of the batteries. Traditional polyolefin separators showed low thermal stability, poor wettability toward the electrolyte, and inadequate barrier properties to polysulfides. To improve the performance and durability of Li-ion and Li-S batteries, development of advanced separators is required. In this review, we summarize recent progress on the fabrication and application of novel separators, including the functionalized polyolefin separator, polymeric separator, and ceramic separator, for Li-ion and Li-S batteries. The characteristics, advantages, and limitations of these separators are discussed. A brief outlook for the future directions of the research in the separators is also provided.
Collapse
Affiliation(s)
- Yinyu Xiang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road 122#, Wuhan, P. R. China
| | - Junsheng Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road 122#, Wuhan, P. R. China
| | - Jiaheng Lei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road 122#, Wuhan, P. R. China
| | - Dan Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road 122#, Wuhan, P. R. China
| | - Zhizhong Xie
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road 122#, Wuhan, P. R. China
| | - Deyu Qu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road 122#, Wuhan, P. R. China
| | - Ke Li
- National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, Luoshi Road 122#, Wuhan, P. R. China
| | - Tengfei Deng
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Luoshi Road 122#, Wuhan, P. R. China
| | - Haolin Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, Wuhan, P. R. China
| |
Collapse
|
8
|
Hoque NA, Thakur P, Bala N, Kool A, Das S, Ray PP. Tunable photoluminescence emissions and large dielectric constant of the electroactive poly(vinylidene fluoride–hexafluoropropylene) thin films modified with SnO2 nanoparticles. RSC Adv 2016. [DOI: 10.1039/c5ra27883j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fabrication of optically active, electroactive and percolative SnO2 NPs/PVDF–HFP nanocomposite thin films with remarkable dielectric constants.
Collapse
Affiliation(s)
- Nur Amin Hoque
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
| | - Pradip Thakur
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
- Department of Physics
| | - Niranjan Bala
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
- Department of Botany
| | - Arpan Kool
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
| | - Sukhen Das
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
| | | |
Collapse
|