1
|
Gulati S, Lingam B HN, Kumar S, Goyal K, Arora A, Varma RS. Improving the air quality with Functionalized Carbon Nanotubes: Sensing and remediation applications in the real world. CHEMOSPHERE 2022; 299:134468. [PMID: 35364076 DOI: 10.1016/j.chemosphere.2022.134468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/19/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
With the world developing exponentially every day, the collateral damage to air is incessant. There are many methods to purify the air but using carbon nanotubes (CNTs) as adsorbents remains one of the most efficient and reliable methods, due to their high maximum adsorption capacity which renders them extremely useful for removing pollutants from the air. The different types of CNTs, their synthesis, functionalization, purification, functioning, and advantages over conventional filters are deliberated along with diverse types of CNTs like single-walled (SWCNTs), multiwalled (MWCNTs), and others, which can be functionalized and deployed for the removal of harmful gases like oxides of nitrogen and sulphur, and ozone, and volatile organic compounds (VOCs), among others. A comprehensive description of CNTs is provided in this overview with illustrative examples from the past five years. The fabrication methods and target gases of many CNTs-based gas sensors are highlighted, in addition to the comparison of their properties, mainly sensitivity. The effect of functionalization on sensors has been discussed in detail for various composites targeting specific gases, including the future outlook of functionalized CNTs in assorted practical applications.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021, India.
| | - Harish Neela Lingam B
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021, India
| | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021, India
| | - Kartika Goyal
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021, India
| | - Aryan Arora
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Valdés-Madrigal MA, Montejo-Alvaro F, Cernas-Ruiz AS, Rojas-Chávez H, Román-Doval R, Cruz-Martinez H, Medina DI. Role of Defect Engineering and Surface Functionalization in the Design of Carbon Nanotube-Based Nitrogen Oxide Sensors. Int J Mol Sci 2021; 22:12968. [PMID: 34884770 PMCID: PMC8658008 DOI: 10.3390/ijms222312968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022] Open
Abstract
Nitrogen oxides (NOx) are among the main atmospheric pollutants; therefore, it is important to monitor and detect their presence in the atmosphere. To this end, low-dimensional carbon structures have been widely used as NOx sensors for their outstanding properties. In particular, carbon nanotubes (CNTs) have been widely used as toxic-gas sensors owing to their high specific surface area and excellent mechanical properties. Although pristine CNTs have shown promising performance for NOx detection, several strategies have been developed such as surface functionalization and defect engineering to improve the NOx sensing of pristine CNT-based sensors. Through these strategies, the sensing properties of modified CNTs toward NOx gases have been substantially improved. Therefore, in this review, we have analyzed the defect engineering and surface functionalization strategies used in the last decade to modify the sensitivity and the selectivity of CNTs to NOx. First, the different types of surface functionalization and defect engineering were reviewed. Thereafter, we analyzed experimental, theoretical, and coupled experimental-theoretical studies on CNTs modified through surface functionalization and defect engineering to improve the sensitivity and selectivity to NOx. Finally, we presented the conclusions and the future directions of modified CNTs as NOx sensors.
Collapse
Affiliation(s)
- Manuel A. Valdés-Madrigal
- Instituto Tecnológico Superior de Ciudad Hidalgo, Tecnológico Nacional de México, Av. Ing. Carlos Rojas Gutiérrez 2120, Fracc. Valle de la Herradura, Ciudad Hidalgo 61100, Mexico;
| | - Fernando Montejo-Alvaro
- Instituto Tecnológico Del Valle de Etla, Tecnológico Nacional de México, Abasolo S/N, Barrio Del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (F.M.-A.); (R.R.-D.)
| | - Amelia S. Cernas-Ruiz
- Instituto Tecnológico del Istmo, Tecnológico Nacional de México, Panamericana 821, 2da., Juchitán de Zaragoza, Oaxaca 70000, Mexico;
| | - Hugo Rojas-Chávez
- Instituto Tecnológico de Tláhuac II, Tecnológico Nacional de México, Camino Real 625, Tláhuac, Ciudad de México 13508, Mexico;
| | - Ramon Román-Doval
- Instituto Tecnológico Del Valle de Etla, Tecnológico Nacional de México, Abasolo S/N, Barrio Del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (F.M.-A.); (R.R.-D.)
| | - Heriberto Cruz-Martinez
- Instituto Tecnológico Del Valle de Etla, Tecnológico Nacional de México, Abasolo S/N, Barrio Del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (F.M.-A.); (R.R.-D.)
| | - Dora I. Medina
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza 52926, Mexico
| |
Collapse
|
3
|
Hwang SI, Chen HY, Fenk C, Rothfuss MA, Bocan KN, Franconi NG, Morgan GJ, White DL, Burkert SC, Ellis JE, Vinay ML, Rometo DA, Finegold DN, Sejdic E, Cho SK, Star A. Breath Acetone Sensing Based on Single-Walled Carbon Nanotube-Titanium Dioxide Hybrids Enabled by a Custom-Built Dehumidifier. ACS Sens 2021; 6:871-880. [PMID: 33720705 DOI: 10.1021/acssensors.0c01973] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Acetone is a metabolic byproduct found in the exhaled breath and can be measured to monitor the metabolic degree of ketosis. In this state, the body uses free fatty acids as its main source of fuel because there is limited access to glucose. Monitoring ketosis is important for type I diabetes patients to prevent ketoacidosis, a potentially fatal condition, and individuals adjusting to a low-carbohydrate diet. Here, we demonstrate that a chemiresistor fabricated from oxidized single-walled carbon nanotubes functionalized with titanium dioxide (SWCNT@TiO2) can be used to detect acetone in dried breath samples. Initially, due to the high cross sensitivity of the acetone sensor to water vapor, the acetone sensor was unable to detect acetone in humid gas samples. To resolve this cross-sensitivity issue, a dehumidifier was designed and fabricated to dehydrate the breath samples. Sensor response to the acetone in dried breath samples from three volunteers was shown to be linearly correlated with the two other ketone bodies, acetoacetic acid in urine and β-hydroxybutyric acid in the blood. The breath sampling and analysis methodology had a calculated acetone detection limit of 1.6 ppm and capable of detecting up to at least 100 ppm of acetone, which is the dynamic range of breath acetone for someone with ketosis. Finally, the application of the sensor as a breath acetone detector was studied by incorporating the sensor into a handheld prototype breathalyzer.
Collapse
Affiliation(s)
- Sean I. Hwang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Hou-Yu Chen
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Courtney Fenk
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael A. Rothfuss
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kara N. Bocan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Nicholas G. Franconi
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Gregory J. Morgan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - David L. White
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Seth C. Burkert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - James E. Ellis
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Miranda L. Vinay
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - David A. Rometo
- Department of Endocrinology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - David N. Finegold
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ervin Sejdic
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Sung Kwon Cho
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
4
|
Negatively-Doped Single-Walled Carbon Nanotubes Decorated with Carbon Dots for Highly Selective NO 2 Detection. NANOMATERIALS 2020; 10:nano10122509. [PMID: 33327528 PMCID: PMC7764981 DOI: 10.3390/nano10122509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/26/2022]
Abstract
In this study, we demonstrated a highly selective chemiresistive-type NO2 gas sensor using facilely prepared carbon dot (CD)-decorated single-walled carbon nanotubes (SWCNTs). The CD-decorated SWCNT suspension was characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-visible spectroscopy, and then spread onto an SiO2/Si substrate by a simple and cost-effective spray-printing method. Interestingly, the resistance of our sensor increased upon exposure to NO2 gas, which was contrary to findings previously reported for SWCNT-based NO2 gas sensors. This is because SWCNTs are strongly doped by the electron-rich CDs to change the polarity from p-type to n-type. In addition, the CDs to SWCNTs ratio in the active suspension was critical in determining the response values of gas sensors; here, the 2:1 device showed the highest value of 42.0% in a sensing test using 4.5 ppm NO2 gas. Furthermore, the sensor selectively responded to NO2 gas (response ~15%), and to other gases very faintly (NO, response ~1%) or not at all (CO, C6H6, and C7H8). We propose a reasonable mechanism of the CD-decorated SWCNT-based sensor for NO2 sensing, and expect that our results can be combined with those of other researches to improve various device performances, as well as for NO2 sensor applications.
Collapse
|
5
|
Zhang B, Huang Y, Vinluan R, Wang S, Cui C, Lu X, Peng C, Zhang M, Zheng J, Gao PX. Enhancing ZnO nanowire gas sensors using Au/Fe 2O 3 hybrid nanoparticle decoration. NANOTECHNOLOGY 2020; 31:325505. [PMID: 32299070 DOI: 10.1088/1361-6528/ab89cf] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Heterojunctions are an important strategy for designing high performance electrical sensor materials and related devices. Herein, a new type of metal-semiconductor hybrid nanoparticle has been successfully used to remarkably sensitize the surface of ZnO nanowires for detecting NO2 with high responses over a broad temperature window ranging from room temperature to 600 °C. These hybrid nanoparticles are comprised of iron oxide nanowires with well dispersed single crystalline Au nanoparticles. The hybrid nanoparticle decorated ZnO nanowires have achieved a giant response, as high as 74 500 toward NO2 gas, about 42 times that of Au decorated ZnO nanowire sensors. This dramatic enhancement may be attributed to the efficient charge transfer across the Au-Fe2O3 Schottky and Fe2O3-ZnO semiconductor heterojunction interfaces. Due to the incorporation of thermally-stable Fe2O3 nanoparticles as the support of Au nanoparticles, the working temperature of nanowire sensors was successfully extended to higher temperatures, with an increase of 200 °C, from 400 °C to 600 °C. Such a combination of semiconductor heterojunction and semiconductor-metal Schottky contact presents a new strategy for designing high performance electrical sensors with high sensitivity, stability, selectivity, and wide operation temperature window, which are potentially suitable for advanced energy systems such as automotive engines and power plants.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dai J, Ogbeide O, Macadam N, Sun Q, Yu W, Li Y, Su BL, Hasan T, Huang X, Huang W. Printed gas sensors. Chem Soc Rev 2020; 49:1756-1789. [DOI: 10.1039/c9cs00459a] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review presents the recent development of printed gas sensors based on functional inks.
Collapse
Affiliation(s)
- Jie Dai
- Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- P. R. China
| | | | | | - Qian Sun
- Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE)
| | - Wenbei Yu
- Cambridge Graphene Centre
- University of Cambridge
- Cambridge CB3 0FA
- UK
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
| | - Yu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Tawfique Hasan
- Cambridge Graphene Centre
- University of Cambridge
- Cambridge CB3 0FA
- UK
| | - Xiao Huang
- Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- P. R. China
| | - Wei Huang
- Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE)
| |
Collapse
|
7
|
Evans GP, Buckley DJ, Skipper NT, Parkin IP. Switchable changes in the conductance of single-walled carbon nanotube networks on exposure to water vapour. NANOSCALE 2017; 9:11279-11287. [PMID: 28758671 DOI: 10.1039/c7nr02141k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We have discovered that wrapping single-walled carbon nanotubes (SWCNTs) with ionic surfactants induces a switch in the conductance-humidity behaviour of SWCNT networks. Residual cationic vs. anionic surfactant induces a respective increase or decrease in the measured conductance across the SWCNT networks when exposed to water vapour. The magnitude of this effect was found to be dependent on the thickness of the deposited SWCNT films. Previously, chemical sensors, field effect transistors (FETs) and transparent conductive films (TCFs) have been fabricated from aqueous dispersions of surfactant functionalised SWCNTs. The results reported here confirm that the electrical properties of such components, based on randomly orientated SWCNT networks, can be significantly altered by the presence of surfactant in the SWCNT layer. A mechanism for the observed behaviour is proposed based on electrical measurements, Raman and UV-Vis-NIR spectroscopy. Additionally, the potential for manipulating the sensitivity of the surfactant functionalised SWCNTs to water vapour for atmospheric humidity sensing was evaluated. The study also presents a simple method to establish the effectiveness of surfactant removal techniques, and highlights the importance of characterising the electrical properties of SWCNT-based devices in both dry and humid operating environments for practical applications.
Collapse
Affiliation(s)
- Gwyn P Evans
- Department of Security and Crime Science, University College London, 35 Tavistock Sq., London, WC1H 9EZ, UK and Department of Chemistry, University College London, 20 Gordon St., London, WC1H 0AJ, UK.
| | - David J Buckley
- Department of Chemistry, University College London, 20 Gordon St., London, WC1H 0AJ, UK.
| | - Neal T Skipper
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK and London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, UK
| | - Ivan P Parkin
- Department of Chemistry, University College London, 20 Gordon St., London, WC1H 0AJ, UK.
| |
Collapse
|
8
|
Kumar D, Chaturvedi P, Saho P, Jha P, Chouksey A, Lal M, Rawat J, Tandon R, Chaudhury P. Effect of single wall carbon nanotube networks on gas sensor response and detection limit. SENSORS AND ACTUATORS B: CHEMICAL 2017; 240:1134-1140. [DOI: 10.1016/j.snb.2016.09.095] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
9
|
Kumar D, Kumar I, Chaturvedi P, Chouksey A, Tandon R, Chaudhury P. Study of simultaneous reversible and irreversible adsorption on single-walled carbon nanotube gas sensor. MATERIALS CHEMISTRY AND PHYSICS 2016; 177:276-282. [DOI: 10.1016/j.matchemphys.2016.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
10
|
Peveler WJ, Roldan A, Hollingsworth N, Porter MJ, Parkin IP. Multichannel Detection and Differentiation of Explosives with a Quantum Dot Array. ACS NANO 2016; 10:1139-46. [PMID: 26579950 DOI: 10.1021/acsnano.5b06433] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The sensing and differentiation of explosive molecules is key for both security and environmental monitoring. Single fluorophores are a widely used tool for explosives detection, but a fluorescent array is a more powerful tool for detecting and differentiating such molecules. By combining array elements into a single multichannel platform, faster results can be obtained from smaller amounts of sample. Here, five explosives are detected and differentiated using quantum dots as luminescent probes in a multichannel platform: 2,4-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT), tetryl (2,4,6-trinitrophenylmethylnitramine), cyclotrimethylenetrinitramine (RDX), and pentaerythritol tetranitrate (PETN). The sharp, variable emissions of the quantum dots, from a single excitation wavelength, make them ideal for such a system. Each color quantum dot is functionalized with a different surface receptor via a facile ligation process. These receptors undergo nonspecific interactions with the explosives, inducing variable fluorescence quenching of the quantum dots. Pattern analysis of the fluorescence quenching data allows for explosive detection and identification with limits-of-detection in the ppb range.
Collapse
Affiliation(s)
- William J Peveler
- Department of Security and Crime Science, University College London , 35 Tavistock Sq., London WC1H 9EZ, United Kingdom
- Department of Chemistry, University College London , 20 Gordon St., London WC1H 0AJ, United Kingdom
| | - Alberto Roldan
- Department of Chemistry, University College London , 20 Gordon St., London WC1H 0AJ, United Kingdom
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Nathan Hollingsworth
- Department of Chemistry, University College London , 20 Gordon St., London WC1H 0AJ, United Kingdom
| | - Michael J Porter
- Department of Chemistry, University College London , 20 Gordon St., London WC1H 0AJ, United Kingdom
| | - Ivan P Parkin
- Department of Chemistry, University College London , 20 Gordon St., London WC1H 0AJ, United Kingdom
| |
Collapse
|
11
|
Fang W, Yang Y, Yu H, Dong X, Wang T, Wang J, Liu Z, Zhao B, Yang M. One-step synthesis of flower-shaped WO3 nanostructures for a high-sensitivity room-temperature NOx gas sensor. RSC Adv 2016. [DOI: 10.1039/c6ra21322g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Flower-shaped WO3 nanoparticles were successfully synthesized by using a facile hydrothermal method. These particles exhibited excellent room-temperature NOx gas-sensing performance with high sensitivity, short response time and low detection limit.
Collapse
Affiliation(s)
- Wencheng Fang
- Key Laboratory of Applied Chemistry and Nanotechnology
- Changchun University of Science and Technology
- Changchun
- P. R. China
| | - Ying Yang
- Key Laboratory of Applied Chemistry and Nanotechnology
- Changchun University of Science and Technology
- Changchun
- P. R. China
- Key Laboratory of Functional Inorganic Material Chemistry
| | - Hui Yu
- Key Laboratory of Applied Chemistry and Nanotechnology
- Changchun University of Science and Technology
- Changchun
- P. R. China
| | - Xiangting Dong
- Key Laboratory of Applied Chemistry and Nanotechnology
- Changchun University of Science and Technology
- Changchun
- P. R. China
| | - Tingting Wang
- Key Laboratory of Applied Chemistry and Nanotechnology
- Changchun University of Science and Technology
- Changchun
- P. R. China
| | - Jinxian Wang
- Key Laboratory of Applied Chemistry and Nanotechnology
- Changchun University of Science and Technology
- Changchun
- P. R. China
| | - Zhelin Liu
- Key Laboratory of Applied Chemistry and Nanotechnology
- Changchun University of Science and Technology
- Changchun
- P. R. China
| | - Bo Zhao
- Key Laboratory of Applied Chemistry and Nanotechnology
- Changchun University of Science and Technology
- Changchun
- P. R. China
| | - Ming Yang
- Key Laboratory of Applied Chemistry and Nanotechnology
- Changchun University of Science and Technology
- Changchun
- P. R. China
| |
Collapse
|
12
|
Amiri A, Shanbedi M, Savari M, Chew BT, Kazi SN. Cadmium ion sorption from aqueous solutions by high surface area ethylenediaminetetraacetic acid- and diethylene triamine pentaacetic acid-treated carbon nanotubes. RSC Adv 2015. [DOI: 10.1039/c5ra08945j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Friedel–Crafts acylation under microwave irradiation has been utilized for realizing functionalization of CNT with EDTA and DTPA. Significant increases in the specific surface area and sequestering metal ions are the most important advantages.
Collapse
Affiliation(s)
- Ahmad Amiri
- Department of Mechanical Engineering
- University of Malaya
- Kuala Lumpur
- Malaysia
| | - Mehdi Shanbedi
- Department of Chemical Engineering
- Faculty of Engineering
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Maryam Savari
- Department of Computer System and Technology
- Faculty of Computer Science & Information Technology
- University of Malaya
- Kuala Lumpur
- Malaysia
| | - B. T. Chew
- Department of Chemical Engineering
- Faculty of Engineering
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - S. N. Kazi
- Department of Mechanical Engineering
- University of Malaya
- Kuala Lumpur
- Malaysia
| |
Collapse
|
13
|
Pugh DC, Luthra V, Singh A, Parkin IP. Enhanced gas sensing performance of indium doped zinc oxide nanopowders. RSC Adv 2015. [DOI: 10.1039/c5ra11613a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Indium doped zinc oxide sensors were synthesised, characterised and tested towards a range of gases, displaying particular sensitivity to ethanol.
Collapse
Affiliation(s)
- David C. Pugh
- Department of Security and Crime Science
- University College London
- London
- UK
- Department of Chemistry
| | | | - Anita Singh
- Department of Physics
- Gargi College
- New Delhi
- India
| | - Ivan P. Parkin
- Department of Chemistry
- University College London
- London
- UK
| |
Collapse
|
14
|
Cherusseri J, Kar KK. Self-standing carbon nanotube forest electrodes for flexible supercapacitors. RSC Adv 2015. [DOI: 10.1039/c5ra04064g] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A self-standing, vertically aligned carbon nanotube forest grown on unidirectional carbon fibers has been fabricated by using chemical vapour deposition.
Collapse
Affiliation(s)
- Jayesh Cherusseri
- Advanced Nanoengineering Materials Laboratory
- Materials Science Programme
- Indian Institute of Technology
- Kanpur
- India
| | - Kamal K. Kar
- Advanced Nanoengineering Materials Laboratory
- Materials Science Programme
- Indian Institute of Technology
- Kanpur
- India
| |
Collapse
|