Significant Improvement of Optoelectronic and Photovoltaic Properties by Incorporating Thiophene in a Solution-Processable D-A-D Modular Chromophore.
Molecules 2015;
20:21787-801. [PMID:
26690103 PMCID:
PMC6332373 DOI:
10.3390/molecules201219798]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 11/23/2022] Open
Abstract
Through the incorporation of a thiophene functionality, a novel solution-processable small organic chromophore was designed, synthesized and characterized for application in bulk-heterojunction solar cells. The new chromophore, (2Z,2′Z)-2,2′-(1,4-phenylene)bis(3-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)acrylonitrile) (coded as AS2), was based on a donor–acceptor–donor (D–A–D) module where a simple triphenylamine unit served as an electron donor, 1,4-phenylenediacetonitrile as an electron acceptor, and a thiophene ring as the π-bridge embedded between the donor and acceptor functionalities. AS2 was isolated as brick-red, needle-shaped crystals, and was fully characterized by 1H- and 13C-NMR, IR, mass spectrometry and single crystal X-ray diffraction. The optoelectronic and photovoltaic properties of AS2 were compared with those of a structural analogue, (2Z,2′Z)-2,2′-(1,4-phenylene)bis(3-(4-(diphenylamino)phenyl)-acrylonitrile) (AS1). Benefiting from the covalent thiophene bridges, compared to AS1 thin solid film, the AS2 film showed: (1) an enhancement of light-harvesting ability by 20%; (2) an increase in wavelength of the longest wavelength absorption maximum (497 nm vs. 470 nm) and (3) a narrower optical band-gap (1.93 eV vs. 2.17 eV). Studies on the photovoltaic properties revealed that the best AS2-[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM)-based device showed an impressive enhanced power conversion efficiency of 4.10%, an approx. 3-fold increase with respect to the efficiency of the best AS1-based device (1.23%). These results clearly indicated that embodiment of thiophene functionality extended the molecular conjugation, thus enhancing the light-harvesting ability and short-circuit current density, while further improving the bulk-heterojunction device performance. To our knowledge, AS2 is the first example in the literature where a thiophene unit has been used in conjunction with a 1,4-phenylenediacetonitrile accepting functionality to extend the π-conjugation in a given D–A–D motif for bulk-heterojunction solar cell applications.
Collapse