1
|
Vecchioni S, Lu B, Livernois W, Ohayon YP, Yoder JB, Yang CF, Woloszyn K, Bernfeld W, Anantram MP, Canary JW, Hendrickson WA, Rothschild LJ, Mao C, Wind SJ, Seeman NC, Sha R. Metal-Mediated DNA Nanotechnology in 3D: Structural Library by Templated Diffraction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210938. [PMID: 37268326 DOI: 10.1002/adma.202210938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/06/2023] [Indexed: 06/04/2023]
Abstract
DNA double helices containing metal-mediated DNA (mmDNA) base pairs are constructed from Ag+ and Hg2+ ions between pyrimidine:pyrimidine pairs with the promise of nanoelectronics. Rational design of mmDNA nanomaterials is impractical without a complete lexical and structural description. Here, the programmability of structural DNA nanotechnology toward its founding mission of self-assembling a diffraction platform for biomolecular structure determination is explored. The tensegrity triangle is employed to build a comprehensive structural library of mmDNA pairs via X-ray diffraction and generalized design rules for mmDNA construction are elucidated. Two binding modes are uncovered: N3-dominant, centrosymmetric pairs and major groove binders driven by 5-position ring modifications. Energy gap calculations show additional levels in the lowest unoccupied molecular orbitals (LUMO) of mmDNA structures, rendering them attractive molecular electronic candidates.
Collapse
Affiliation(s)
- Simon Vecchioni
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Brandon Lu
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - William Livernois
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Yoel P Ohayon
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Jesse B Yoder
- IMCA-CAT, Argonne National Lab, Argonne, IL, 60439, USA
| | - Chu-Fan Yang
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Karol Woloszyn
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - William Bernfeld
- Department of Chemistry, New York University, New York, NY, 10003, USA
- ASPIRE Program, King School, Stamford, CT, 06905, USA
| | - M P Anantram
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - James W Canary
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Wayne A Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Lynn J Rothschild
- NASA Ames Research Center, Planetary Sciences Branch, Moffett Field, CA, 94035, USA
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Shalom J Wind
- Department of Applied Physics and Applied Math, Columbia University, New York, NY, 10027, USA
| | - Nadrian C Seeman
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, NY, 10003, USA
| |
Collapse
|
2
|
Mesoscopic model confirms strong base pair metal mediated bonding for T-Hg 2+-T and weaker for C-Ag +-C. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Frańska M, Konował E. Unexpected cytosine-AuCl 4- interaction under electrospray ionization mass spectrometry conditions-Formation of cytosine-Au(I) complexes. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:225-229. [PMID: 31801025 DOI: 10.1177/1469066719893233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interaction of cytosine with AuCl4-, under electrospray ionization mass spectrometric conditions, is discussed. On the basis of respective full scan mass spectra and product ion spectra, obtained in positive and negative ion mode, it has been deduced that cytosine is very prone to form Au(I)-containing complexes. The complexes may be formed in the gas phase by decomposition of Au(III)-containing complexes and also in the electrospray ionization source as a result of the occurrence of redox process. It has also been found that the interaction of cytosine with Au+ is stronger than that with Cu+ or Ag+, although taking into account the electrostatic attraction, it is not expected.
Collapse
Affiliation(s)
- Magdalena Frańska
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo, Poznań, Poland
| | - Emilia Konował
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo, Poznań, Poland
| |
Collapse
|
4
|
Schmidt OP, Benz AS, Mata G, Luedtke NW. HgII binds to C-T mismatches with high affinity. Nucleic Acids Res 2018; 46:6470-6479. [PMID: 29901748 PMCID: PMC6061796 DOI: 10.1093/nar/gky499] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/04/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023] Open
Abstract
Binding reactions of HgII and AgI to pyrimidine-pyrimidine mismatches in duplex DNA were characterized using fluorescent nucleobase analogs, thermal denaturation and 1H NMR. Unlike AgI, HgII exhibited stoichiometric, site-specific binding of C-T mismatches. The on- and off-rates of HgII binding were approximately 10-fold faster to C-T mismatches (kon ≈ 105 M-1 s-1, koff ≈ 10-3 s-1) as compared to T-T mismatches (kon ≈ 104 M-1 s-1, koff ≈ 10-4 s-1), resulting in very similar equilibrium binding affinities for both types of 'all natural' metallo base pairs (Kd ≈ 10-150 nM). These results are in contrast to thermal denaturation analyses, where duplexes containing T-T mismatches exhibited much larger increases in thermal stability upon addition of HgII (ΔTm = 6-19°C), as compared to those containing C-T mismatches (ΔTm = 1-4°C). In addition to revealing the high thermodynamic and kinetic stabilities of C-HgII-T base pairs, our results demonstrate that fluorescent nucleobase analogs enable highly sensitive detection and characterization of metal-mediated base pairs - even in situations where metal binding has little or no impact on the thermal stability of the duplex.
Collapse
Affiliation(s)
- Olivia P Schmidt
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| | - Andrea S Benz
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| | - Guillaume Mata
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| | - Nathan W Luedtke
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| |
Collapse
|
5
|
Jash B, Müller J. Metal-Mediated Base Pairs: From Characterization to Application. Chemistry 2017; 23:17166-17178. [PMID: 28833684 DOI: 10.1002/chem.201703518] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 12/11/2022]
Abstract
The investigation of metal-mediated base pairs and the development of their applications represent a prominent area of research at the border of bioinorganic chemistry and supramolecular coordination chemistry. In metal-mediated base pairs, the complementary nucleobases in a nucleic acid duplex are connected by coordinate bonds to an embedded metal ion rather than by hydrogen bonds. Because metal-mediated base pairs facilitate a site-specific introduction of metal-based functionality into nucleic acids, they are ideally suited for use in DNA nanotechnology. This minireview gives an overview of the general requirements that need to be considered when devising a new metal-mediated base pair, both from a conceptual and from an experimental point of view. In addition, it presents selected recent applications of metal-modified nucleic acids to indicate the scope of metal-mediated base pairing.
Collapse
Affiliation(s)
- Biswarup Jash
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie and NRW Graduate School of Chemistry, Corrensstr. 28/30, 48149, Münster, Germany
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie and NRW Graduate School of Chemistry, Corrensstr. 28/30, 48149, Münster, Germany
| |
Collapse
|
6
|
Dairaku T, Furuita K, Sato H, Šebera J, Nakashima K, Kondo J, Yamanaka D, Kondo Y, Okamoto I, Ono A, Sychrovský V, Kojima C, Tanaka Y. Structure Determination of an AgI-Mediated Cytosine-Cytosine Base Pair within DNA Duplex in Solution with1H/15N/109Ag NMR Spectroscopy. Chemistry 2016; 22:13028-31. [DOI: 10.1002/chem.201603048] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Takenori Dairaku
- School of Pharmaceutical Sciences; Ohu University; 31-1 Misumido, Tomita-machi, Koriyama Fukushima 963-8611 Japan
- Graduate School of Pharmaceutical Sciences; Tohoku University; 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai Miyagi 980-8578 Japan
| | - Kyoko Furuita
- Institute for Protein Research; Osaka University; 3-2 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Hajime Sato
- Application, Bruker BioSpin K. K.; 3-9 Moriya-cho, Kanagawa-ku, Yokohama Kanagawa 221-0022 Japan
| | - Jakub Šebera
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic, v.v.i.; Flemingovo náměstí 2 16610 Praha 6 Czech Republic
| | - Katsuyuki Nakashima
- Faculty of Phamaceutical Scienes; Tokushima Bunri University; Yamashiro-cho Tokushima 770-8514 Japan
| | - Jiro Kondo
- Department of Materials and Life Sciences; Faculty of Science and Technology, Sophia University; 7-1 Kioi-cho, Chiyoda-ku Tokyo 102-8554 Japan
| | - Daichi Yamanaka
- Graduate School of Pharmaceutical Sciences; Tohoku University; 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai Miyagi 980-8578 Japan
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical Sciences; Tohoku University; 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai Miyagi 980-8578 Japan
| | - Itaru Okamoto
- Department of Material & Life Chemistry, Faculty of Engineering; Kanagawa University; 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama Kanagawa 221-8686 Japan
| | - Akira Ono
- Department of Material & Life Chemistry, Faculty of Engineering; Kanagawa University; 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama Kanagawa 221-8686 Japan
| | - Vladimír Sychrovský
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic, v.v.i.; Flemingovo náměstí 2 16610 Praha 6 Czech Republic
- Czech Technical University in Prague; Faculty of Electrical Engineering, Department of Electrotechnology; Technická 2 166 27 Praha 6 Czech Republic
| | - Chojiro Kojima
- Institute for Protein Research; Osaka University; 3-2 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Yoshiyuki Tanaka
- Graduate School of Pharmaceutical Sciences; Tohoku University; 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai Miyagi 980-8578 Japan
- Faculty of Phamaceutical Scienes; Tokushima Bunri University; Yamashiro-cho Tokushima 770-8514 Japan
| |
Collapse
|
7
|
Johnson RP, Fleming AM, Beuth LR, Burrows CJ, White HS. Base Flipping within the α-Hemolysin Latch Allows Single-Molecule Identification of Mismatches in DNA. J Am Chem Soc 2016; 138:594-603. [PMID: 26704521 PMCID: PMC4828915 DOI: 10.1021/jacs.5b10710] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A method for identifying and differentiating DNA duplexes containing the mismatched base pairs CC and CA at single molecule resolution with the protein pore α-hemolysin (αHL) is presented. Unique modulating current signatures are observed for duplexes containing the CC and CA mismatches when the mismatch site in the duplex is situated in proximity to the latch constriction of αHL during DNA residence inside the pore. The frequency and current amplitude of the modulation states are dependent on the mismatch type (CC or CA) permitting easy discrimination of these mismatches from one another, and from a fully complementary duplex that exhibits no modulation. We attribute the modulating current signatures to base flipping and subsequent interaction with positively charged lysine residues at the latch constriction of αHL. Our hypothesis is supported by the extended residence times of DNA duplexes within the pore when a mismatch is in proximity to the latch constriction, and by the loss of the two-state current signature in low pH buffers (<6.3), where the protonation of one of the cytosine bases increases the stability of the intrahelical state.
Collapse
Affiliation(s)
- Robert P Johnson
- Department of Chemistry, University of Utah , 315 S. 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah , 315 S. 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Laura R Beuth
- Department of Chemistry, University of Utah , 315 S. 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah , 315 S. 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Henry S White
- Department of Chemistry, University of Utah , 315 S. 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
8
|
Dairaku T, Furuita K, Sato H, Kondo Y, Kojima C, Ono A, Tanaka Y. Exploring a DNA Sequence for the Three-Dimensional Structure Determination of a Silver(I)-Mediated C-C Base Pair in a DNA Duplex By (1)H NMR Spectroscopy. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:877-900. [PMID: 26576739 DOI: 10.1080/15257770.2015.1088160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, we discovered novel silver(I)-mediated cytosine-cytosine base pair (C-Ag(I)-C) in DNA duplexes. To understand the properties of these base pairs, we searched for a DNA sequence that can be used in NMR structure determination. After extensive sequence optimizations, a non-symmetric 15-base-paired DNA duplex with a single C-Ag(I)-C base pair flanked by 14 A-T base pairs was selected. In spite of its challenging length for NMR measurements (30 independent residues) with small sequence variation, we could assign most non-exchangeable protons (254 out of 270) and imino protons for structure determination.
Collapse
Affiliation(s)
- Takenori Dairaku
- a Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku , Sendai , Miyagi , Japan
| | - Kyoko Furuita
- b Institute for Protein Research, Osaka University , Suita , Osaka , Japan
| | - Hajime Sato
- c Bruker BioSpin K.K. , Yokohama , Kanagawa , Japan
| | - Yoshinori Kondo
- a Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku , Sendai , Miyagi , Japan
| | - Chojiro Kojima
- b Institute for Protein Research, Osaka University , Suita , Osaka , Japan
| | - Akira Ono
- d Department of Material & Life Chemistry , Kangawa University, Kanagawa-ku , Yokohama , Kanagawa , Japan
| | - Yoshiyuki Tanaka
- a Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku , Sendai , Miyagi , Japan.,e Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University , Yamashiro-cho , Tokushima , Japan
| |
Collapse
|