1
|
Peng CH, Wang TY, Chueh CY, Wu T, Chou JP, Wu MY, Lin YW. One-Pot Synthesis of Tannic Acid-Au Nanoparticles for the Colorimetric Determination of Hydrogen Peroxide and Glucose. ACS OMEGA 2024; 9:38217-38226. [PMID: 39281907 PMCID: PMC11391431 DOI: 10.1021/acsomega.4c05826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024]
Abstract
This study introduces a novel one-pot method employing tannic acid (TA) to synthesize stable gold nanoparticles (TA-AuNPs), which are characterized using transmission electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy. We apply these TA-AuNPs in a newly developed colorimetric assay for hydrogen peroxide (H2O2) detection that utilizes the oxidation of iodide (I-) on TA-AuNPs, leading to a detectable yellow color change in the solution. The reaction kinetics are captured by the rate equation R = 0.217[KI]0.61[H2O2]0.69. The possible sensing mechanism was proposed through density functional theory calculations. At the optimum conditions, the proposed TA-AuNPs/I- system demonstrated a linear relationship between H2O2 concentration and absorbance intensity (λ = 350 nm) and achieved a limit of detection (LOD) of 7.33 μM. Furthermore, we expand the utility of this approach to glucose detection by integrating glucose oxidase into the system, resulting in a LOD of 10.0 μM. Application of this method to actual urine samples yielded spiked recovery rates ranging from 96.6-102.0% and relative standard deviations between 3.00-8.34%, underscoring its efficacy and potential for real-world bioanalytical challenges.
Collapse
Affiliation(s)
- Chun-Hsiang Peng
- Department of Chemistry, National Changhua University of Education, 1 Jin-De Road, Changhua City 50007, Taiwan
| | - Tsung-Yuan Wang
- Department of Chemistry, National Changhua University of Education, 1 Jin-De Road, Changhua City 50007, Taiwan
| | - Chen-Yu Chueh
- Department of Chemistry, National Changhua University of Education, 1 Jin-De Road, Changhua City 50007, Taiwan
| | - Tsunghsueh Wu
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, Wisconsin 53818-3099, United States
| | - Jyh-Pin Chou
- Department of Physics, National Changhua University of Education, 1 Jin-De Road, Changhua City 50007, Taiwan
| | - Mei-Yao Wu
- School of Post-baccalaureate Chinese Medicine, China Medical University, 91, Hsueh-Shih Road, Taichung 40424, Taiwan
| | - Yang-Wei Lin
- Department of Chemistry, National Changhua University of Education, 1 Jin-De Road, Changhua City 50007, Taiwan
| |
Collapse
|
2
|
Rezanejade Bardajee G, Rahimi Chahrogh A, Monfared A. Fabrication of Glucose Fluorescent Aptasensor Based on CdTe Quantum Dots. J Fluoresc 2024:10.1007/s10895-024-03885-5. [PMID: 39167342 DOI: 10.1007/s10895-024-03885-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
Diabetes is a chronic metabolic disease characterized by high blood glucose (or blood sugar) levels, which harms the heart, blood vessels, eyes, kidneys, and nerves over time. So, it is crucial to regularly control glucose concentration in biological fluids to check its targets, reduce unpleasant symptoms of high and low blood sugar, and avoid long-term diabetes complications. This study developed a simple, rapid, sensitive, and cost-effective fluorescence system for glucose determination. The fluorescent Aptasensor was fabricated using cadmium telluride quantum dots (CdTe QDs) modified with thioglycolic acid and functionalized with thiol-glucose-aptamer through ligand exchange. The thiol-glucose-aptamer interacted directly with CdTe QDs, increasing fluorescence intensity. However, it decreased when the target molecules of glucose were introduced. The structural and morphological characteristics of the Aptasensor were confirmed by various analytical methods such as UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive x-ray spectroscopy (EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM), and dynamic light scattering (DLS). According to the typical Stern-Volmer equation, the relationship between fluorescent quenching and target concentration was linear with a detection limit (LOD) of 0.13 ± 1.95 × 10-11 mol L-1 and a relative standard deviation (RSD) of 1.05%. The Aptasensor demonstrated high specificity towards the target and stability over 28 days. Furthermore, it detected glucose in human serum and urine with a recovery rate of up to 99.74%. The results indicate that the fluorescent Aptasensor could be valuable in developing robust sensing technology for low-concentrated analytes.
Collapse
Affiliation(s)
- Ghasem Rezanejade Bardajee
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, 19839-63113, Iran.
| | | | - Aazam Monfared
- Department of Chemistry, Payame Noor University, Tehran, 19395-3697, Iran
| |
Collapse
|
3
|
Xue M, Mao W, Chen J, Zheng F, Chen W, Shen W, Tang S. Application of Au or Ag nanomaterials for colorimetric detection of glucose. Analyst 2021; 146:6726-6740. [PMID: 34693409 DOI: 10.1039/d1an01540k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, Au and Ag nanomaterials have been widely used in the determination of glucose owing to their specific properties such as large specific surface area, high extinction coefficient, strong localized surface plasmon resonance effect and enzyme-mimicking activity. Compared with other methods, colorimetric determination of glucose with Au or Ag nanomaterials features the advantages of simple operation, low cost and easy observation. In this review, several typical synthesis methods of Au and Ag nanomaterials are introduced. Strategies for the colorimetric determination of glucose by Au or Ag nanomaterials are elaborated. The challenges and prospects of the application of Au or Ag nanomaterials for colorimetric detection of glucose are also discussed.
Collapse
Affiliation(s)
- Mingliang Xue
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Wei Mao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Jisen Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Fenfen Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Wenhui Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| |
Collapse
|
4
|
António M, Vitorino R, Daniel-da-Silva AL. Gold nanoparticles-based assays for biodetection in urine. Talanta 2021; 230:122345. [PMID: 33934794 DOI: 10.1016/j.talanta.2021.122345] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Urine is a biofluid easy to collect through a non-invasive technique that allows collecting a large volume of sample. The use of urine for disease diagnosis is not yet well explored. However, it has gained attention over the last three years. It has been applied in the diagnosis of several illnesses such as kidney disease, bladder cancer, prostate cancer and cardiovascular diseases. In the last decade, gold nanoparticles (Au NPs) have attracted attention in biosensors' development for the diagnosis of diseases due to their electrical and optical properties, ability to conjugate with biomolecules, high sensitivity, and selectivity. Therefore, this article aims to present a comprehensive view of state of the art on the advances made in the quantification of analytes in urinary samples using AuNPs based assays, with a focus on protein analysis. The type of diagnosis methods, the Au NPs synthesis approaches and the strategies for surface modification aiming at selectivity towards the different targets are highlighted.
Collapse
Affiliation(s)
- Maria António
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Vitorino
- iBiMED-Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal; Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal; LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal.
| | - Ana L Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
5
|
Silvestri A, Lay L, Psaro R, Polito L, Evangelisti C. Fluidic Manufacture of Star-Shaped Gold Nanoparticles. Chemistry 2017; 23:9732-9735. [DOI: 10.1002/chem.201701617] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Alessandro Silvestri
- Nanotechnology Lab.; National Council of the Research; CNR-ISTM; Via G. Fantoli 16/15 20138 Milan Italy
- Department of Chemistry; University of Milan; Via C. Golgi 19 20133 Milan Italy
- Present address: Department of Biomaterials; Max-Planck Institute of Colloids and Interfaces; Potsdam-Golm 14476 Germany
| | - Luigi Lay
- Department of Chemistry; University of Milan; Via C. Golgi 19 20133 Milan Italy
- CRC Materiali Polimerici (LaMPo); University of Milan; Via C. Golgi 19 20133 Milan Italy
| | - Rinaldo Psaro
- Nanotechnology Lab.; National Council of the Research; CNR-ISTM; Via G. Fantoli 16/15 20138 Milan Italy
| | - Laura Polito
- Nanotechnology Lab.; National Council of the Research; CNR-ISTM; Via G. Fantoli 16/15 20138 Milan Italy
| | - Claudio Evangelisti
- Nanotechnology Lab.; National Council of the Research; CNR-ISTM; Via G. Fantoli 16/15 20138 Milan Italy
| |
Collapse
|
6
|
Sahoo R, Santra S, Ray C, Pal A, Negishi Y, Ray SK, Pal T. Hierarchical growth of ZnFe2O4 for sensing applications. NEW J CHEM 2016. [DOI: 10.1039/c5nj02547h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective sensing of toxic heavy metals Hg(ii) and environmentally hazardous acetone vapour using mesoporous ZnFe2O4 NFs, synthesized from our laboratory developed modified hydrothermal technique.
Collapse
Affiliation(s)
- Ramkrishna Sahoo
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302, India
| | - Sumita Santra
- Department of Physics
- Indian Institute of Technology
- Kharagpur-721302, India
| | - Chaiti Ray
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302, India
| | - Anjali Pal
- Department of Civil Engineering
- Indian Institute of Technology
- Kharagpur-721302, India
| | - Yuichi Negishi
- Department of Applied Chemistry
- Tokyo University of Science
- Tokyo-1628601, Japan
| | - Samit Kumar Ray
- Department of Physics
- Indian Institute of Technology
- Kharagpur-721302, India
| | - Tarasankar Pal
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302, India
| |
Collapse
|
7
|
Chaudhary A, Khan S, Gupta A, Nandi CK. Effect of surface chemistry and morphology of gold nanoparticle on the structure and activity of common blood proteins. NEW J CHEM 2016. [DOI: 10.1039/c5nj03720d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In vitro cell cytotoxicity and conformational study of serum protein with anisotropic gold nanoparticles.
Collapse
Affiliation(s)
| | - Syamantak Khan
- School of Basic Sciences
- Indian Institute of Technology Mandi
- India
| | - Abhishek Gupta
- School of Basic Sciences
- Indian Institute of Technology Mandi
- India
| | | |
Collapse
|