Tata A, Marzoli F, Massaro A, Passabì E, Bragolusi M, Negro A, Cristaudo I, Piro R, Belluco S. Assessing direct analysis in real-time mass spectrometry for the identification and serotyping of Legionella pneumophila.
J Appl Microbiol 2021;
132:1479-1488. [PMID:
34543502 DOI:
10.1111/jam.15301]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
AIMS
The efficacy of ambient mass spectrometry to identify and serotype Legionella pneumophila was assessed. To this aim, isolated waterborne colonies were submitted to a rapid extraction method and analysed by direct analysis in real-time mass spectrometry (DART-HRMS).
METHODS AND RESULTS
The DART-HRMS profiles, coupled with partial least squares discriminant analysis (PLS-DA), were first evaluated for their ability to differentiate Legionella spp. from other bacteria. The resultant classification model achieved an accuracy of 98.1% on validation. Capitalising on these encouraging results, DART-HRMS profiling was explored as an alternative approach for the identification of L. pneumophila sg. 1, L. pneumophila sg. 2-15 and L. non-pneumophila; therefore, a different PLS-DA classifier was built. When tested on a validation set, this second classifier reached an overall accuracy of 95.93%. It identified the harmful L. pneumophila sg. 1 with an impressive specificity (100%) and slightly lower sensitivity (91.7%), and similar performances were reached in the classification of L. pneumophila sg. 2-15 and L. non-pneumophila.
CONCLUSIONS
The results of this study show the DART-HMRS method has good accuracy, and it is an effective method for Legionella serogroup profiling.
SIGNIFICANCE AND IMPACT OF THE STUDY
These preliminary findings could open a new avenue for the rapid identification and quick epidemiologic tracing of L. pneumophila, with a consequent improvement to risk assessment.
Collapse