1
|
Fu Y, Jing Z, Chen T, Xu X, Wang X, Ren M, Wu Y, Wu T, Li Y, Zhang H, Ji P, Yang S. Nanotube patterning reduces macrophage inflammatory response via nuclear mechanotransduction. J Nanobiotechnology 2023; 21:229. [PMID: 37468894 DOI: 10.1186/s12951-023-01912-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/26/2023] [Indexed: 07/21/2023] Open
Abstract
The inflammatory immune environment surrounding titanium bone implants determines the formation of osseointegration, and nanopatterning on implant surfaces modulates the immune microenvironment in the implant region. Among many related mechanisms, the mechanism by which nanopatterning controls macrophage inflammatory response still needs to be elucidated. In this paper, we found that inhibition of the nuclear envelope protein lamin A/C by titania nanotubes (TNTs) reduced the macrophage inflammatory response. Knockdown of lamin A/C reduced macrophage inflammatory marker expression, while overexpression of lamin A/C significantly elevated inflammatory marker expression. We further found that suppression of lamin A/C by TNTs limited actin polymerization, thereby reducing the nuclear translocation of the actin-dependent transcriptional cofactor MRTF-A, which subsequently reduced the inflammatory response. In addition, emerin, which is a key link between lamin A/C and actin, was delocalized from the nucleus in response to mechanical stimulation by TNTs, resulting in reduced actin organization. Under inflammatory conditions, TNTs exerted favourable osteoimmunomodulatory effects on the osteogenic differentiation of mouse bone marrow-derived stem cells (mBMSCs) in vitro and osseointegration in vivo. This study shows and confirms for the first time that lamin A/C-mediated nuclear mechanotransduction controls macrophage inflammatory response, and this study provides a theoretical basis for the future design of immunomodulatory nanomorphologies on the surface of metallic bone implants.
Collapse
Affiliation(s)
- Yiru Fu
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Zheng Jing
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tao Chen
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Xinxin Xu
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Xu Wang
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Mingxing Ren
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Yanqiu Wu
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Tianli Wu
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Yuzhou Li
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - He Zhang
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Sheng Yang
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
2
|
Alarçin E, İzbudak B, Yüce Erarslan E, Domingo S, Tutar R, Titi K, Kocaaga B, Guner FS, Bal-Öztürk A. Optimization of methacrylated gelatin /layered double hydroxides nanocomposite cell-laden hydrogel bioinks with high printability for 3D extrusion bioprinting. J Biomed Mater Res A 2023; 111:209-223. [PMID: 36213938 DOI: 10.1002/jbm.a.37450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 12/13/2022]
Abstract
Layered double hydroxides (LDHs) offer unique source of inspiration for design of bone mimetic biomaterials due to their superior mechanical properties, drug delivery capability and regulation cellular behaviors, particularly by divalent metal cations in their structure. Three-dimensional (3D) bioprinting of LDHs holds great promise as a novel strategy thanks to highly tunable physiochemical properties and shear-thinning ability of LDHs, which allow shape fidelity after deposition. Herein, we introduce a straightforward strategy for extrusion bioprinting of cell laden nanocomposite hydrogel bioink of gelatin methacryloyl (GelMA) biopolymer and LDHs nanoparticles. First, we synthesized LDHs by co-precipitation process and systematically examined the effect of LDHs addition on printing parameters such as printing pressure, extrusion rate, printing speed, and finally bioink printability in creating grid-like constructs. The developed hydrogel bioinks provided precise control over extrudability, extrusion uniformity, and structural integrity after deposition. Based on the printability and rheological analysis, the printability could be altered by controlling the concentration of LDHs, and printability was found to be ideal with the addition of 3 wt % LDHs. The addition of LDHs resulted in remarkably enhanced compressive strength from 652 kPa (G-LDH0) to 1168 kPa (G-LDH3). It was shown that the printed nanocomposite hydrogel scaffolds were able to support encapsulated osteoblast survival, spreading, and proliferation in the absence of any osteoinductive factors taking advantage of LDHs. In addition, cells encapsulated in G-LDH3 had a larger cell spreading area and higher cell aspect ratio than those encapsulated in G-LDH0. Altogether, the results demonstrated that the developed GelMA/LDHs nanocomposite hydrogel bioink revealed a high potential for extrusion bioprinting with high structural fidelity to fabricate implantable 3D hydrogel constructs for repair of bone defects.
Collapse
Affiliation(s)
- Emine Alarçin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Burçin İzbudak
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
| | - Elif Yüce Erarslan
- Chemical Engineering Department, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sherif Domingo
- Chemical Engineering Department, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Rumeysa Tutar
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kariman Titi
- Department of Chemistry, Faculty of Science and Technology, Hebron University, Hebron, West Bank, Palestine
| | - Banu Kocaaga
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - F Seniha Guner
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ayça Bal-Öztürk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey.,Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Istanbul, Turkey.,3D Bioprinting Design&Prototyping R&D Center, Istinye University, Istanbul, Turkey
| |
Collapse
|
3
|
Yang Y, Lin Y, Xu R, Zhang Z, Zeng W, Xu Q, Deng F. Micro/Nanostructured Topography on Titanium Orchestrates Dendritic Cell Adhesion and Activation via β2 Integrin-FAK Signals. Int J Nanomedicine 2022; 17:5117-5136. [PMID: 36345509 PMCID: PMC9636866 DOI: 10.2147/ijn.s381222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
Background and Purpose In clinical application of dental implants, the functional state of dendritic cells (DCs) has been suggested to have a close relationship with the implant survival rate or speed of osseointegration. Although microscale surfaces have a stable osteogenesis property, they also incline to trigger unfavorable DCs activation and threaten the osseointegration process. Nanoscale structures have an advantage in regulating cell immune response through orchestrating cell adhesion, indicating the potential of hierarchical micro/nanostructured surface in regulation of DCs’ activation without sacrificing the advantage of microscale topography. Materials and Methods Two micro/nanostructures were fabricated based on microscale rough surfaces through anodization or alkali treatment, the sand-blasted and acid-etched (SA) surface served as control. The surface characteristics, in vitro and in vivo DC immune reactions and β2 integrin-FAK signal expression were systematically investigated. The DC responses to different surface topographies after FAK inhibition were also tested. Results Both micro/nano-modified surfaces exhibited unique composite structures, with higher hydrophilicity and lower roughness compared to the SA surface. The DCs showed relatively immature functional states with round morphologies and significantly downregulated β2 integrin-FAK levels on micro/nanostructures. Implant surfaces with micro/nano-topographies also triggered lower levels of DC inflammatory responses than SA surfaces in vivo. The inhibited FAK activation effectively reduced the differences in topography-caused DC activation and narrowed the differences in DC activation among the three groups. Conclusion Compared to the SA surface with solely micro-scale topography, titanium surfaces with hybrid micro/nano-topographies reduced DC inflammatory response by influencing their adhesion states. This regulatory effect was accompanied by the modulation of β2 integrin-FAK signal expression. The β2 integrin-FAK-mediated adhesion plays a critical role in topography-induced DC activation, which represents a potential target for material–cell interaction regulation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yujing Lin
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Ruogu Xu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Zhengchuan Zhang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Wenyi Zeng
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Qiong Xu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China,Correspondence: Qiong Xu; Feilong Deng, Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No. 56, Ling Yuan Xi Road, Guangzhou, 510055, People’s Republic of China, Tel +86 20 83862537, Fax +86 20 83822807, Email ;
| | - Feilong Deng
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Lan Y, Huang N, Fu Y, Liu K, Zhang H, Li Y, Yang S. Morphology-Based Deep Learning Approach for Predicting Osteogenic Differentiation. Front Bioeng Biotechnol 2022; 9:802794. [PMID: 35155409 PMCID: PMC8830423 DOI: 10.3389/fbioe.2021.802794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/30/2021] [Indexed: 02/03/2023] Open
Abstract
Early, high-throughput, and accurate recognition of osteogenic differentiation of stem cells is urgently required in stem cell therapy, tissue engineering, and regenerative medicine. In this study, we established an automatic deep learning algorithm, i.e., osteogenic convolutional neural network (OCNN), to quantitatively measure the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs). rBMSCs stained with F-actin and DAPI during early differentiation (day 0, 1, 4, and 7) were captured using laser confocal scanning microscopy to train OCNN. As a result, OCNN successfully distinguished differentiated cells at a very early stage (24 h) with a high area under the curve (AUC) (0.94 ± 0.04) and correlated with conventional biochemical markers. Meanwhile, OCNN exhibited better prediction performance compared with the single morphological parameters and support vector machine. Furthermore, OCNN successfully predicted the dose-dependent effects of small-molecule osteogenic drugs and a cytokine. OCNN-based online learning models can further recognize the osteogenic differentiation of rBMSCs cultured on several material surfaces. Hence, this study initially demonstrated the foreground of OCNN in osteogenic drug and biomaterial screening for next-generation tissue engineering and stem cell research.
Collapse
Affiliation(s)
- Yiqing Lan
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Nannan Huang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yiru Fu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Kehao Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - He Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuzhou Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Yuzhou Li, ; Sheng Yang,
| | - Sheng Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Yuzhou Li, ; Sheng Yang,
| |
Collapse
|
5
|
Zhang Y, Gulati K, Li Z, Di P, Liu Y. Dental Implant Nano-Engineering: Advances, Limitations and Future Directions. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2489. [PMID: 34684930 PMCID: PMC8538755 DOI: 10.3390/nano11102489] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 12/27/2022]
Abstract
Titanium (Ti) and its alloys offer favorable biocompatibility, mechanical properties and corrosion resistance, which makes them an ideal material choice for dental implants. However, the long-term success of Ti-based dental implants may be challenged due to implant-related infections and inadequate osseointegration. With the development of nanotechnology, nanoscale modifications and the application of nanomaterials have become key areas of focus for research on dental implants. Surface modifications and the use of various coatings, as well as the development of the controlled release of antibiotics or proteins, have improved the osseointegration and soft-tissue integration of dental implants, as well as their antibacterial and immunomodulatory functions. This review introduces recent nano-engineering technologies and materials used in topographical modifications and surface coatings of Ti-based dental implants. These advances are discussed and detailed, including an evaluation of the evidence of their biocompatibility, toxicity, antimicrobial activities and in-vivo performances. The comparison between these attempts at nano-engineering reveals that there are still research gaps that must be addressed towards their clinical translation. For instance, customized three-dimensional printing technology and stimuli-responsive, multi-functional and time-programmable implant surfaces holds great promise to advance this field. Furthermore, long-term in vivo studies under physiological conditions are required to ensure the clinical application of nanomaterial-modified dental implants.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China;
| | - Karan Gulati
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia;
| | - Ze Li
- School of Stomatology, Chongqing Medical University, Chongqing 400016, China;
| | - Ping Di
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia;
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
6
|
Zhang Z, Li Y, He P, Liu F, Li L, Zhang H, Ji P, Yang S. Nanotube-decorated hierarchical tantalum scaffold promoted early osseointegration. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 35:102390. [PMID: 33857685 DOI: 10.1016/j.nano.2021.102390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/24/2021] [Accepted: 03/16/2021] [Indexed: 01/28/2023]
Abstract
This study aimed to fabricate a hierarchical tantalum scaffold mimicking natural bone structure to enhance osseointegration. Porous tantalum scaffolds (p-Ta) with microgradients were fabricated by selective laser melting according to a computer-aided design model. Electrochemical anodization produced nanotubes on the p-Ta surface (p-Ta-nt). SEM verified the construction of a unique nanostructure on p-Ta-nt. Contact angle and protein adsorption measurements demonstrated that p-Ta-nt have enhanced hydrophilicity and protein absorption. MC3T3-E1 preosteoblasts showed increased filamentous pseudopods and comparable cell proliferation when cultured on p-Ta-nt. Osteogenic marker gene (Osterix, Runx2, COL-I) transcription was significantly upregulated in MC3T3-E1 cells cultured on p-Ta-nt after 7 days. After implantation into the femurs of New Zealand white rabbits for 2 weeks, histological examination found improved early osseointegration in the p-Ta-nt group. This study showed that a hierarchical tantalum structure could enhance early osteogenic effects in vitro and in vivo.
Collapse
Affiliation(s)
- Zhiyi Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuzhou Li
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ping He
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fengyi Liu
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lingjie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - He Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Sheng Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
7
|
Štefančík M, Válková L, Veverková J, Balvan J, Vičar T, Babula P, Mašek J, Kulich P, Pávková Goldbergová M. Ni and TiO 2 nanoparticles cause adhesion and cytoskeletal changes in human osteoblasts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6018-6029. [PMID: 32981019 DOI: 10.1007/s11356-020-10908-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Titanium-based alloys have established a crucial role in implantology. As material deteriorates overtime, nanoparticles of TiO2 and Ni are released. This study is focused on the impact of TiO2 and Ni nanoparticles with size of 100 nm on cytoskeletal and adhesive changes in human physiological and osteoarthritic osteoblasts. The impact of nanoparticles with concentration of 1.5 ng/mL on actin and tubulin expression and gene expression of FAK and ICAM-1 was studied. The cell size and actin expression of physiological osteoblasts decreased in presence of Ni nanoparticles, while TiO2 nanoparticles caused increase in cell size and actin expression. Both cell lines expressed more FAK as a response to TiO2 nanoparticles. ICAM-1 gene was overexpressed in both cell lines as a reaction to both types of nanoparticles. The presented study shows a crucial role of Ni and TiO2 nanoparticles in human osteoblast cytoskeletal and adhesive changes, especially connected with the osteoarthritic cells. Graphical abstract.
Collapse
Affiliation(s)
- Michal Štefančík
- Institute of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Lucie Válková
- Institute of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jana Veverková
- Institute of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jan Balvan
- Institute of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Tomáš Vičar
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Pavel Kulich
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Monika Pávková Goldbergová
- Institute of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
8
|
Thaik N, Sangkert S, Meesane J, Kooptarnond K, Khangkhamano M. Bioactive surface-modified Ti with titania nanotube arrays to design endoprosthesis for maxillofacial surgery: structural formation, morphology, physical properties and osseointegration. ACTA ACUST UNITED AC 2020; 15:035018. [PMID: 32053809 DOI: 10.1088/1748-605x/ab763c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Modification of the surface of titanium into titania (TiO2) nanotube (TNT) arrays was performed by electrochemical anodization to design an endoprosthesis for maxillofacial surgery. TNT arrays with different surface structures were successfully coated on titanium substrates by varying the anodizing voltages and annealed at 450 °C for 4 h. The phase composition and morphology of the nanotubes were examined by x-ray powder diffraction and field-emission scanning electron microscopy, respectively. The biological functions and water wettability of various surface structures were also investigated. The results demonstrated that the annealed nanotubes were composed of an anatase phase only at all applied voltages. The tube diameters and lengths increased as the voltage increased. The surfaces with modification had more wettability, cell adhesion, proliferation, alkaline phosphatase activity and calcium deposition than the surfaces without modification. Finally, the results demonstrated that a modified surface of titanium to produce TNT arrays as a biomaterial is promising to design an osseointegrated surface of endoprosthesis for maxillofacial surgery.
Collapse
Affiliation(s)
- Nyein Thaik
- Department of Mining and Materials Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | | | | | | | | |
Collapse
|
9
|
He P, Zhang H, Li Y, Ren M, Xiang J, Zhang Z, Ji P, Yang S. 1α,25-Dihydroxyvitamin D3-loaded hierarchical titanium scaffold enhanced early osseointegration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110551. [DOI: 10.1016/j.msec.2019.110551] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/29/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022]
|
10
|
Garrett PW, Johnston GW, Bosshardt DD, Jones AA, Sasada Y, Ong JL, Cochran DL. Hard and soft tissue evaluation of titanium dental implants and abutments with nanotubes in canines. J Periodontol 2019; 91:516-523. [PMID: 31490010 DOI: 10.1002/jper.18-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 03/12/2019] [Accepted: 03/17/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Little is known regarding the interaction of dental implant surface nanotubes and oral soft and hard tissues. The purpose of this study was to evaluate both histologically and radiographically the qualitative and quantitative effects of dental implant surface nanotubes on hard and soft tissue in a canine model. METHODS Three subgroups consisting of a combination of test and control implants and abutments (Group A: control implant/control abutment, Group B: control implant/test abutment: Group C: test implant/test abutment) were placed in edentulous mandibles of six large-breed canines. Implants and abutments were placed on one side at baseline, and on the opposite side of the mandible at week 10; sacrifice occurred at week 12. Quantitative and qualitative analyses were used to measure newly formed hard and soft tissues histologically and radiographically. RESULTS The mean radiographic change in marginal bone level from weeks 0 to 12 between implant groups was not statistically significant (P > 0.05). Mean soft tissue contact (junctional epithelium + connective tissue) for Groups A, B, and C were 2.29, 2.33, and 2.31 mm, respectively, with no statistically significant difference (P > 0.05) between the groups. All connective tissue fibers were oriented parallel to the abutment regardless of surface treatment. CONCLUSIONS The findings of this study suggest that healing of hard and soft tissues around implants and abutments is similar when comparing grit-blasted surfaces to machined, turned surfaces with nanotubes. Both resulted in similar soft tissue contact values, as well as connective tissue fiber orientation.
Collapse
Affiliation(s)
- Phillip W Garrett
- Department of Periodontics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | | | - Dieter D Bosshardt
- Robert K. Schenk Laboratory of Oral Histology, University of Bern, Bern, Switzerland
| | - Archie A Jones
- Department of Periodontics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Yuya Sasada
- Funakoshi Research Institute of Clinical Periodontology, Fukuoka, Japan
| | - Joo L Ong
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - David L Cochran
- Department of Periodontics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| |
Collapse
|
11
|
Poudel A, Fernandez MA, Tofail SAM, Biggs MJP. Boron Nitride Nanotube Addition Enhances the Crystallinity and Cytocompatibility of PVDF-TrFE. Front Chem 2019; 7:364. [PMID: 31165067 PMCID: PMC6536595 DOI: 10.3389/fchem.2019.00364] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Analysis of the cellular response to piezoelectric materials has been driven by the discovery that many tissue components exhibit piezoelectric behavior ex vivo. In particular, polyvinylidene fluoride and the trifluoroethylene co-polymer (PVDF-TrFE) have been identified as promising piezo and ferroelectric materials with applications in energy harvesting and biosensor devices. Critically, the modulation of the structural and crystalline properties of PVDF-TrFE through annealing processes and the addition of particulate or fibrous fillers has been shown to modulate significantly the materials electromechanical properties. In this study, a PVDF-TrFE/boron-nitride nanotube composite was evaluated by modulated differential scanning calorimetry to assess the effects of boron nitride nanotube addition and thermal annealing on the composite structure and crystal behavior. An increased beta crystal formation [f(β) = 0.71] was observed following PVDF-TrFE annealing at the first crystallization temperature of 120°C. In addition, the inclusion of boron nitride nanotubes significantly increased the crystal formation behavior [f(β) = 0.76] and the mechanical properties of the material. Finally, it was observed that BNNT incorporation enhance the adherence and proliferation of human tenocyte cells in vitro.
Collapse
Affiliation(s)
- Anup Poudel
- CURAM, SFI Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Marc A Fernandez
- CURAM, SFI Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Syed A M Tofail
- Department of Physics, and Bernal Institute, University of Limerick, Limerick, Ireland
| | - Manus J P Biggs
- CURAM, SFI Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
12
|
Aguirre R, Echeverry-Rendón M, Quintero D, Castaño JG, Harmsen MC, Robledo S, Echeverría E F. Formation of nanotubular TiO2
structures with varied surface characteristics for biomaterial applications. J Biomed Mater Res A 2018; 106:1341-1354. [DOI: 10.1002/jbm.a.36331] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/15/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Robinson Aguirre
- Centro de Investigación, Innovación y Desarrollo de Materiales (CIDEMAT), Facultad de Ingeniería; Universidad de Antioquia, Calle 70 No. 52-21; Medellín Colombia
| | - Mónica Echeverry-Rendón
- Centro de Investigación, Innovación y Desarrollo de Materiales (CIDEMAT), Facultad de Ingeniería; Universidad de Antioquia, Calle 70 No. 52-21; Medellín Colombia
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Instituto de Investigaciones Médicas, Facultad de Medicina; Universidad de Antioquia, Calle 70 No. 52-21; Medellín Colombia
- Department of Pathology and Medical Biology, Hanzeplein 1-EA11; University of Groningen, University Medical Center Groningen; Groningen GZ NL-9713 The Netherlands
| | - David Quintero
- Centro de Investigación, Innovación y Desarrollo de Materiales (CIDEMAT), Facultad de Ingeniería; Universidad de Antioquia, Calle 70 No. 52-21; Medellín Colombia
| | - Juan G. Castaño
- Centro de Investigación, Innovación y Desarrollo de Materiales (CIDEMAT), Facultad de Ingeniería; Universidad de Antioquia, Calle 70 No. 52-21; Medellín Colombia
| | - Martin C. Harmsen
- Department of Pathology and Medical Biology, Hanzeplein 1-EA11; University of Groningen, University Medical Center Groningen; Groningen GZ NL-9713 The Netherlands
| | - Sara Robledo
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Instituto de Investigaciones Médicas, Facultad de Medicina; Universidad de Antioquia, Calle 70 No. 52-21; Medellín Colombia
| | - Félix Echeverría E
- Centro de Investigación, Innovación y Desarrollo de Materiales (CIDEMAT), Facultad de Ingeniería; Universidad de Antioquia, Calle 70 No. 52-21; Medellín Colombia
| |
Collapse
|
13
|
Iwata N, Nozaki K, Horiuchi N, Yamashita K, Tsutsumi Y, Miura H, Nagai A. Effects of controlled micro-/nanosurfaces on osteoblast proliferation. J Biomed Mater Res A 2017; 105:2589-2596. [DOI: 10.1002/jbm.a.36118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Natsuko Iwata
- Department of Fixed Prosthodontics; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University; Tokyo Japan
| | - Kosuke Nozaki
- Department of Biofunction Research; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University; Tokyo Japan
| | - Naohiro Horiuchi
- Department of Inorganic Biomaterials; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University; Tokyo Japan
| | - Kimihiro Yamashita
- Department of Inorganic Biomaterials; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University; Tokyo Japan
| | - Yusuke Tsutsumi
- Department of Metallic Biomaterials; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University; Tokyo Japan
| | - Hiroyuki Miura
- Department of Fixed Prosthodontics; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University; Tokyo Japan
| | - Akiko Nagai
- Department of Biofunction Research; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University; Tokyo Japan
| |
Collapse
|
14
|
Gulati K, Ivanovski S. Dental implants modified with drug releasing titania nanotubes: therapeutic potential and developmental challenges. Expert Opin Drug Deliv 2016; 14:1009-1024. [PMID: 27892717 DOI: 10.1080/17425247.2017.1266332] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The transmucosal nature of dental implants presents a unique therapeutic challenge, requiring not only rapid establishment and subsequent maintenance of osseointegration, but also the formation of resilient soft tissue integration. Key challenges in achieving long-term success are sub-optimal bone integration in compromised bone conditions and impaired trans-mucosal tissue integration in the presence of a persistent oral microbial biofilm. These challenges can be targeted by employing a drug-releasing implant modification such as TiO2 nanotubes (TNTs), engineered on titanium surfaces via electrochemical anodization. Areas covered: This review focuses on applications of TNT-based dental implants towards achieving optimal therapeutic efficacy. Firstly, the functions of TNT implants will be explored in terms of their influence on osseointegration, soft tissue integration and immunomodulation. Secondly, the developmental challenges associated with such implants are reviewed including sterilization, stability and toxicity. Expert opinion: The potential of TNTs is yet to be fully explored in the context of the complex oral environment, including appropriate modulation of alveolar bone healing, immune-inflammatory processes, and soft tissue responses. Besides long-term in vivo assessment under masticatory loading conditions, investigating drug-release profiles in vivo and addressing various technical challenges are required to bridge the gap between research and clinical dentistry.
Collapse
Affiliation(s)
- Karan Gulati
- a School of Dentistry and Oral Health , Griffith University , Gold Coast , Australia.,b Tissue Engineering and Regenerative Medicine (TERM) Group, Understanding Chronic Conditions (UCC) Program, Menzies Health Institute Queensland , Griffith University , Gold Coast , Australia
| | - Sašo Ivanovski
- a School of Dentistry and Oral Health , Griffith University , Gold Coast , Australia.,b Tissue Engineering and Regenerative Medicine (TERM) Group, Understanding Chronic Conditions (UCC) Program, Menzies Health Institute Queensland , Griffith University , Gold Coast , Australia
| |
Collapse
|
15
|
Jiang N, Du P, Qu W, Li L, Liu Z, Zhu S. The synergistic effect of TiO 2 nanoporous modification and platelet-rich plasma treatment on titanium-implant stability in ovariectomized rats. Int J Nanomedicine 2016; 11:4719-4733. [PMID: 27695328 PMCID: PMC5033614 DOI: 10.2147/ijn.s113375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
For several decades, titanium and its alloys have been commonly utilized for endosseous implantable materials, because of their good mechanical properties, chemical resistance, and biocompatibility. But associated low bone mass, wear and loss characteristics, and high coefficients of friction have limited their long-term stable performance, especially in certain abnormal bone-metabolism conditions, such as postmenopausal osteoporosis. In this study, we investigated the effects of platelet-rich plasma (PRP) treatment and TiO2 nanoporous modification on the stability of titanium implants in osteoporotic bone. After surface morphology, topographical structure, and chemical changes of implant surface had been detected by scanning electron microscopy (SEM), atomic force microscopy, contact-angle measurement, and X-ray diffraction, we firstly assessed in vivo the effect of PRP treatment on osseointegration of TiO2-modified implants in ovariectomized rats by microcomputed tomography examinations, histology, biomechanical testing, and SEM observation. Meanwhile, the potential molecular mechanism involved in peri-implant osseous enhancement was also determined by quantitative real-time polymerase chain reaction. The results showed that this TiO2-modified surface was able to lead to improve bone implant contact, while PRP treatment was able to increase the implant surrounding bone mass. The synergistic effect of both was able to enhance the terminal force of implants drastically in biomechanical testing. Compared with surface modification, PRP treatment promoted earlier osteogenesis with increased expression of the RUNX2 and COL1 genes and suppressed osteoclastogenesis with increased expression of OPG and decreased levels of RANKL. These promising results show that PRP treatment combined with a TiO2-nanomodified surface can improve titanium-implant biomechanical stability in ovariectomized rats, suggesting a beneficial effect to support the success of implants in osteoporotic bone.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu; Yantai City Stomatological Hospital, Yantai, People's Republic of China
| | - Pinggong Du
- Yantai City Stomatological Hospital, Yantai, People's Republic of China
| | - Weidong Qu
- Yantai City Stomatological Hospital, Yantai, People's Republic of China
| | - Lin Li
- Yantai City Stomatological Hospital, Yantai, People's Republic of China
| | - Zhonghao Liu
- Yantai City Stomatological Hospital, Yantai, People's Republic of China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu
| |
Collapse
|
16
|
Gulati K, Maher S, Findlay DM, Losic D. Titania nanotubes for orchestrating osteogenesis at the bone-implant interface. Nanomedicine (Lond) 2016; 11:1847-64. [PMID: 27389393 DOI: 10.2217/nnm-2016-0169] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Titanium implants can fail due to inappropriate biomechanics at the bone-implant interface that leads to suboptimal osseointegration. Titania nanotubes (TNTs) fabricated on Ti implants by the electrochemical process have emerged as a promising modification strategy to facilitate osseointegration. TNTs enable augmentation of bone cell functions at the bone-implant interface and can be tailored to incorporate multiple functionalities including the loading of active biomolecules into the nanotubes to target anabolic processes in bone conditions such as osteoporotic fractures. Advanced functions can be introduced, including biopolymers, nanoparticles and electrical stimulation to release growth factors in a desired manner. This review describes the application of TNTs for enhancing osteogenesis at the bone-implant interface, as an alternative approach to systemic delivery of therapeutic agents.
Collapse
Affiliation(s)
- Karan Gulati
- School of Chemical Engineering, University of Adelaide, SA, Australia
| | - Shaheer Maher
- School of Chemical Engineering, University of Adelaide, SA, Australia
- Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - David M Findlay
- Discipline of Orthopaedics & Trauma, University of Adelaide, SA, Australia
| | - Dusan Losic
- School of Chemical Engineering, University of Adelaide, SA, Australia
| |
Collapse
|
17
|
Hoon JL, Tan MH, Koh CG. The Regulation of Cellular Responses to Mechanical Cues by Rho GTPases. Cells 2016; 5:cells5020017. [PMID: 27058559 PMCID: PMC4931666 DOI: 10.3390/cells5020017] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/21/2022] Open
Abstract
The Rho GTPases regulate many cellular signaling cascades that modulate cell motility, migration, morphology and cell division. A large body of work has now delineated the biochemical cues and pathways, which stimulate the GTPases and their downstream effectors. However, cells also respond exquisitely to biophysical and mechanical cues such as stiffness and topography of the extracellular matrix that profoundly influence cell migration, proliferation and differentiation. As these cellular responses are mediated by the actin cytoskeleton, an involvement of Rho GTPases in the transduction of such cues is not unexpected. In this review, we discuss an emerging role of Rho GTPase proteins in the regulation of the responses elicited by biophysical and mechanical stimuli.
Collapse
Affiliation(s)
- Jing Ling Hoon
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Mei Hua Tan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Cheng-Gee Koh
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
- Mechanobiology Institute, Singapore 117411, Singapore.
| |
Collapse
|
18
|
Zhang H, Cooper LF, Zhang X, Zhang Y, Deng F, Song J, Yang S. Titanium nanotubes induce osteogenic differentiation through the FAK/RhoA/YAP cascade. RSC Adv 2016. [DOI: 10.1039/c6ra04002k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
TNT topography restricts cell spreading, impairs the FAK recruitment in FAs, and thereby attenuates RhoA activity as well as cytoskeleton formation, which in turn expels YAP from that cell nucleus to the cytoplasm and initiates osteodifferentiation.
Collapse
Affiliation(s)
- He Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
- College of Stomatology
- Chongqing Medical University
- Chongqing
| | - Lyndon F. Cooper
- Department Head
- Oral Biology
- University of Illinois at Chicago
- College of Dentistry
- Chicago
| | - Xiaonan Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
- College of Stomatology
- Chongqing Medical University
- Chongqing
| | - Yi Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
- College of Stomatology
- Chongqing Medical University
- Chongqing
| | - Feng Deng
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
- College of Stomatology
- Chongqing Medical University
- Chongqing
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
- College of Stomatology
- Chongqing Medical University
- Chongqing
| | - Sheng Yang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
- College of Stomatology
- Chongqing Medical University
- Chongqing
| |
Collapse
|