Cui P, Sun R, Xiao L, Wu W. Exploring the Effects of the Interaction of Carbon and MoS
2 Catalyst on CO
2 Hydrogenation to Methanol.
Int J Mol Sci 2022;
23:5220. [PMID:
35563618 PMCID:
PMC9104557 DOI:
10.3390/ijms23095220]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023] Open
Abstract
Hydrogenation of CO2 to form methanol utilizing green hydrogen is a promising route to realizing carbon neutrality. However, the development of catalyst with high activity and selectivity to methanol from the CO2 hydrogenation is still a challenge due to the chemical inertness of CO2 and its characteristics of multi-path conversion. Herein, a series of highly active carbon-confining molybdenum sulfide (MoS2@C) catalysts were prepared by the in-situ pyrolysis method. In comparison with the bulk MoS2 and MoS2/C, the stronger interaction between MoS2 and the carbon layer was clearly generated. Under the optimized reaction conditions, MoS2@C showed better catalytic performance and long-term stability. The MoS2@C catalyst could sustain around 32.4% conversion of CO2 with 94.8% selectivity of MeOH for at least 150 h.
Collapse