1
|
Manohar SM. Shedding Light on Intracellular Proteins using Flow Cytometry. Cell Biochem Biophys 2024; 82:1693-1707. [PMID: 38831173 DOI: 10.1007/s12013-024-01338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/05/2024]
Abstract
Intracellular protein abundance is routinely measured in mammalian cells using population-based techniques such as western blotting which fail to capture single cell protein levels or using fluorescence microscopy which is although suitable for single cell protein detection but not for rapid analysis of large no. of cells. Flow cytometry offers rapid, high-throughput, multiparameter-based analysis of intracellular protein expression in statistically significant no. of cells at single cell resolution. In past few decades, customized assays have been developed for flow cytometric detection of specific intracellular proteins. This review discusses the scope of flow cytometry for intracellular protein detection in mammalian cells along with specific applications. Technological advancements to overcome the limitations of traditional flow cytometry for the same are also discussed.
Collapse
Affiliation(s)
- Sonal M Manohar
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
2
|
Abstract
Flow cytometry (FCM) is a sophisticated technique that works on the principle of light scattering and fluorescence emission by the specific fluorescent probe-labeled cells as they pass through a laser beam. It offers several unique advantages as it allows fast, relatively quantitative, multiparametric analysis of cell populations at the single cell level. In addition, it also enables physical sorting of the cells to separate the subpopulations based on different parameters. In this constantly evolving field, innovative technologies such as imaging FCM, mass cytometry and Raman FCM are being developed in order to address limitations of traditional FCM. This review explains the general principles, main applications and recent advances in the field of FCM.
Collapse
|
3
|
Safa N, Vaithiyanathan M, Sombolestani S, Charles S, Melvin AT. Population-based analysis of cell-penetrating peptide uptake using a microfluidic droplet trapping array. Anal Bioanal Chem 2019; 411:2729-2741. [PMID: 30854596 PMCID: PMC6472966 DOI: 10.1007/s00216-019-01713-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 01/09/2023]
Abstract
Cell-penetrating peptides (CPPs) have garnered significant attention as a method to introduce reporters and therapeutics into intact cells. While numerous studies have been performed identifying new CPP sequences, relatively little is known about their uptake efficiency at the single-cell level. Here, a droplet microfluidic trapping array was used to characterize CPP uptake across a population of single intact cells. The microfluidic device allowed for facile and rapid isolation and analysis of single-cell fluorescence in a 787-member overhead trapping array with > 99% droplet trapping efficiency. The permeability efficiencies of four different CPPs were studied and compared in HeLa cells. Population analysis was performed using linkage hierarchical cluster analysis by R programming to bin cells into subpopulations expressing very low to very high peptide uptake efficiencies. CPP uptake was observed to be heterogeneous across the population of cells with peptide concentration and sequence both playing important roles in the diversity of CPP uptake, the overall peptide uptake efficiency, and the intracellular homogeneity of peptide distribution. This microfluidic-based analytical approach finds application in personalized medicine and provides new insight in the heterogeneity of CPP uptake which has the potential to affect both biosensor and drug internalization in intact cells. Graphical abstract .
Collapse
Affiliation(s)
- Nora Safa
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | | | - Shayan Sombolestani
- Craft and Hawkins Department of Petroleum Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Seleipiri Charles
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
4
|
Murphy TW, Zhang Q, Naler LB, Ma S, Lu C. Recent advances in the use of microfluidic technologies for single cell analysis. Analyst 2017; 143:60-80. [PMID: 29170786 PMCID: PMC5839671 DOI: 10.1039/c7an01346a] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The inherent heterogeneity in cell populations has become of great interest and importance as analytical techniques have improved over the past decades. With the advent of personalized medicine, understanding the impact of this heterogeneity has become an important challenge for the research community. Many different microfluidic approaches with varying levels of throughput and resolution exist to study single cell activity. In this review, we take a broad view of the recent microfluidic developments in single cell analysis based on microwell, microchamber, and droplet platforms. We cover physical, chemical, and molecular biology approaches for cellular and molecular analysis including newly emerging genome-wide analysis.
Collapse
Affiliation(s)
- Travis W Murphy
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | |
Collapse
|
5
|
Ma S, Murphy TW, Lu C. Microfluidics for genome-wide studies involving next generation sequencing. BIOMICROFLUIDICS 2017; 11:021501. [PMID: 28396707 PMCID: PMC5346105 DOI: 10.1063/1.4978426] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/16/2017] [Indexed: 05/11/2023]
Abstract
Next-generation sequencing (NGS) has revolutionized how molecular biology studies are conducted. Its decreasing cost and increasing throughput permit profiling of genomic, transcriptomic, and epigenomic features for a wide range of applications. Microfluidics has been proven to be highly complementary to NGS technology with its unique capabilities for handling small volumes of samples and providing platforms for automation, integration, and multiplexing. In this article, we review recent progress on applying microfluidics to facilitate genome-wide studies. We emphasize on several technical aspects of NGS and how they benefit from coupling with microfluidic technology. We also summarize recent efforts on developing microfluidic technology for genomic, transcriptomic, and epigenomic studies, with emphasis on single cell analysis. We envision rapid growth in these directions, driven by the needs for testing scarce primary cell samples from patients in the context of precision medicine.
Collapse
Affiliation(s)
- Sai Ma
- Department of Biomedical Engineering and Mechanics, Virginia Tech , Blacksburg, Virginia 24061, USA
| | - Travis W Murphy
- Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia 24061, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia 24061, USA
| |
Collapse
|
6
|
Monitoring the intracellular calcium response to a dynamic hypertonic environment. Sci Rep 2016; 6:23591. [PMID: 27004604 PMCID: PMC4804238 DOI: 10.1038/srep23591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/09/2016] [Indexed: 01/13/2023] Open
Abstract
The profiling of physiological response of cells to external stimuli at the single cell level is of importance. Traditional approaches to study cell responses are often limited by ensemble measurement, which is challenging to reveal the complex single cell behaviors under a dynamic environment. Here we report the development of a simple microfluidic device to investigate intracellular calcium response to dynamic hypertonic conditions at the single cell level in real-time. Interestingly, a dramatic elevation in the intracellular calcium signaling is found in both suspension cells (human leukemic cell line, HL-60) and adherent cells (lung cancer cell line, A549), which is ascribed to the exposure of cells to the hydrodynamic stress. We also demonstrate that the calcium response exhibits distinct single cell heterogeneity as well as cell-type-dependent responses to the same stimuli. Our study opens up a new tool for tracking cellular activity at the single cell level in real time for high throughput drug screening.
Collapse
|
7
|
Cao Z, Lu C. Quantitative Detection of Nucleocytoplasmic Transport of Native Proteins in Single Cells. Methods Mol Biol 2015; 1346:239-52. [PMID: 26542726 DOI: 10.1007/978-1-4939-2987-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The detection of protein translocation (i.e., the movement of intracellular proteins among various subcellular compartments) conventionally relies on imaging and subcellular-fractionation-based techniques that do not generate information on a large cell population with single-cell resolution. Although special flow cytometric tools such as imaging flow cytometry may generate single-cell data on processes such as nucleocytoplasmic transport, such equipment is expensive (thus has limited accessibility) and has low throughput for examining cells due to the reliance on high-speed imaging. Here we describe a protocol for detecting translocation of native proteins using a common flow cytometer which detects fluorescence intensity without imaging. We conduct chemical release of cytosolic proteins and fluorescence immunostaining of a targeted protein. The detected fluorescence intensity is quantitatively correlated to the cytosolic/nuclear localization of the protein at the single cell level. Our technique provides a simple route for studying nucleocytoplasmic transport with single-cell resolution using common flow cytometers.
Collapse
Affiliation(s)
- Zhenning Cao
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Suite 235 Goodwin Hall, 635 Prices Fork Road, Blacksburg, VA, 24061, USA.
| |
Collapse
|
8
|
Ray M, Tang R, Jiang Z, Rotello VM. Quantitative tracking of protein trafficking to the nucleus using cytosolic protein delivery by nanoparticle-stabilized nanocapsules. Bioconjug Chem 2015; 26:1004-7. [PMID: 26011555 DOI: 10.1021/acs.bioconjchem.5b00141] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We describe a method for quantitative monitoring of subcellular protein trafficking using nanoparticle-stabilized nanocapsules for protein delivery. This method provides rapid delivery of the protein into the cytosol, eliminating complications from protein homeostasis processes found with cellularly expressed proteins. After delivery, nuclear protein trafficking was followed by real time microscopic imaging. Quantitative analyses of the accumulation percentage and the import dynamics of the nuclear protein trafficking, demonstrate the utility of this method for studying intracellular trafficking systems.
Collapse
Affiliation(s)
- Moumita Ray
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Rui Tang
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Ziwen Jiang
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|