1
|
Liu TF, Yao Y, Lu CD. Enantioselective Formal 1,2-Diamination of Ketenes with Iminosulfinamides: Asymmetric Synthesis of Unnatural α,α-Disubstituted α-Amino Acid Derivatives. Org Lett 2024. [PMID: 38602315 DOI: 10.1021/acs.orglett.4c00978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
A method was developed for the enantioselective formal 1,2-diamination of disubstituted ketenes using iminosulfinamides as nitrogen sources. The protocol involves the addition of lithium iminosulfinamides to ketenes to form N-iminosulfinyl amide metalloenolates. These metalloenolates then undergo a [2,3]-sigmatropic rearrangement to yield unnatural α,α-disubstituted α-amino acid derivatives with high enantiopurity. The chirality present at the sulfur atom in the iminosulfinamides is effectively transferred to α carbon of the resulting products, facilitating the highly enantioselective amination of ketenes.
Collapse
Affiliation(s)
- Teng-Fei Liu
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Yun Yao
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Chong-Dao Lu
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| |
Collapse
|
2
|
Li JR, Yao Y, Lu CD. Stereoselective Synthesis of Less Accessible α-Tertiary Amino Ketimines via Electrophilic Amination of α-Branched N- tert-Butanesulfinyl Ketimines. Org Lett 2023; 25:3670-3675. [PMID: 37171378 DOI: 10.1021/acs.orglett.3c01056] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A stereocontrolled electrophilic amination of α-branched N-tert-butanesulfinyl ketimines was developed to construct α-aminoketone derivatives containing less accessible α-tetrasubstituted stereocenters. Stereospecific α-deprotonation of ketimines with potassium tert-butoxide gave stereodefined metalloenamine intermediates that could act as nucleophiles to attack azodicarboxylic derivatives, affording α-aminated products in high yields with excellent stereoselectivities.
Collapse
Affiliation(s)
- Jin-Rui Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yun Yao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chong-Dao Lu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
3
|
Kremsmair A, Sunagatullina AS, Bole LJ, Mastropierro P, Graßl S, Wilke HR, Godineau E, Hevia E, Knochel P. Exploiting Coordination Effects for the Regioselective Zincation of Diazines Using TMPZnX⋅LiX (X=Cl, Br). Angew Chem Int Ed Engl 2022; 61:e202210491. [PMID: 35943036 PMCID: PMC9826189 DOI: 10.1002/anie.202210491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 01/11/2023]
Abstract
A new method for regioselective zincations of challenging N-heterocyclic substrates such as pyrimidines and pyridazine was reported using bimetallic bases TMPZnX⋅LiX (TMP=2,2,6,6-tetramethylpiperidyl; X=Cl, Br). Reactions occurred under mild conditions (25-70 °C, using 1.75 equivalents of base without additives), furnishing 2-zincated pyrimidines and 3-zincated pyridazine, which were then trapped with a variety of electrophiles. Contrasting with other s-block metalating systems, which lack selectivity in their reactions even when operating at low temperatures, these mixed Li/Zn bases enabled unprecedented regioselectivities that cannot be replicated by either LiTMP nor Zn(TMP)2 on their own. Spectroscopic and structural interrogations of organometallic intermediates involved in these reactions have shed light on the complex constitution of reaction mixtures and the origins of their special reactivities.
Collapse
Affiliation(s)
- Alexander Kremsmair
- Department Chemie & BiochemieLudwig Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Alisa S. Sunagatullina
- Department Chemie & BiochemieLudwig Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Leonie J. Bole
- Department für Chemie und BiochemieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Pasquale Mastropierro
- Department für Chemie und BiochemieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Simon Graßl
- Department Chemie & BiochemieLudwig Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Henrik R. Wilke
- Department Chemie & BiochemieLudwig Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Edouard Godineau
- Forschung & Entwicklung SteinSyngenta Crop Protection AGSchaffhauserstrasse 1014332SteinSwitzerland
| | - Eva Hevia
- Department für Chemie und BiochemieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Paul Knochel
- Department Chemie & BiochemieLudwig Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
4
|
Kremsmair A, Sunagatullina AS, Bole LJ, Mastropierro P, Graßl S, Wilke HR, Godineau E, Hevia E, Knochel P. Exploiting Coordination Effects for the Regioselective Zincation of Diazines Using TMPZnX·LiX (X = Cl, Br). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Leonie J. Bole
- Universität Bern: Universitat Bern Department für Chemie und Biochemie SWITZERLAND
| | | | - Simon Graßl
- Ludwig-Maximilians-Universitat Munchen Department of Chemistry GERMANY
| | - Henrik R. Wilke
- Ludwig-Maximilians-Universitat Munchen Department of Chemistry GERMANY
| | - Edouard Godineau
- Syngenta Crop Protection AG Forschung & Entwicklung Stein SWITZERLAND
| | - Eva Hevia
- Universität Bern: Universitat Bern Chemie und Biochemie SWITZERLAND
| | - Paul Knochel
- Ludwig-Maximilians-Universitat Munchen Department of Chemistry Butenandtstr. 5-13 81377 München GERMANY
| |
Collapse
|
5
|
|
6
|
Xu PW, Cui XY, Chen C, Zhou F, Yu JS, Ao YF, Zhou J. Enantioselective Synthesis of C α-Tetrasubstituted N-Hydroxyl-α-amino Nitriles via Cyanation of Ketonitrones Using Me 2(CH 2Cl)SiCN. Org Lett 2021; 23:8471-8476. [PMID: 34644098 DOI: 10.1021/acs.orglett.1c03176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Here, we report an unprecedented catalytic enantioselective cyanation of ketonitrones enabled by the bifunctional cyanating reagent Me2(CH2Cl)SiCN. This approach allows facile access to optically active N-hydroxyl-α-amino nitriles that are of high synthetic value but difficult to acquire by other methods. The use of bifunctional cyanating reagent Me2(CH2Cl)SiCN not only achieves an enantioselectivity higher than that with TMSCN but also enables various diversification reactions of the resulting silylated adducts. This represents the first enantioselective catalytic nucleophilic addition reaction of unactivated ketone-derived nitrones, exhibiting the potential of such tetrasubstituted C═N bonds for asymmetric synthesis of N-hydroxy α-amino acids and other N-hydroxy tertiary amines.
Collapse
Affiliation(s)
- Peng-Wei Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Xiao-Yuan Cui
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Chen Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Jin-Sheng Yu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
7
|
Mallik S, Bhajammanavar V, Baidya M. Regioselective Nitrosocarbonyl Aldol Reaction of Deconjugated Butyrolactams: Synthesis of γ‐Heterosubstituted α,β‐Unsaturated γ‐Lactams. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sumitava Mallik
- Department of Chemistry Indian Institute of Technology Madras Chennai 6000036 Tamil Nadu India
| | - Vinod Bhajammanavar
- Department of Chemistry Indian Institute of Technology Madras Chennai 6000036 Tamil Nadu India
| | - Mahiuddin Baidya
- Department of Chemistry Indian Institute of Technology Madras Chennai 6000036 Tamil Nadu India
| |
Collapse
|
8
|
|
9
|
Fu X, Hao Y, Bai HY, Duan A, Zhang SY. Co-Catalyzed Direct Regio- and Enantioselective Intermolecular γ-Amination of N-Acylpyrazoles. Org Lett 2020; 23:25-30. [DOI: 10.1021/acs.orglett.0c03522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xin Fu
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Chemistry and Chemical Engineering, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Environmental Science & Technology, Hunan University, Changsha 410082, China
| | - Yu Hao
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Chemistry and Chemical Engineering, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| | - He-Yuan Bai
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Chemistry and Chemical Engineering, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Abing Duan
- College of Environmental Science & Technology, Hunan University, Changsha 410082, China
| | - Shu-Yu Zhang
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Chemistry and Chemical Engineering, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Trost BM, Tracy JS, Lin EY. Asymmetric Electrophilic Amination and Hydrazination of Acyclic α-Branched Ketones for the Formation of α-Tertiary Amines and Hydrazines. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Jacob S. Tracy
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Eric Y. Lin
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| |
Collapse
|
11
|
Basile T, Capaldo L, Ravelli D, Quadrelli P. Photocatalyzed Generation of Nitrosocarbonyl Intermediates Under Solar Light Irradiation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Teresa Basile
- Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 - Pavia Italy
| | - Luca Capaldo
- Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 - Pavia Italy
| | - Davide Ravelli
- Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 - Pavia Italy
| | - Paolo Quadrelli
- Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 - Pavia Italy
| |
Collapse
|
12
|
|
13
|
Mallik S, Bhajammanavar V, Mukherjee AP, Baidya M. Catalytic Regiodivergent Dearomatization Reaction of Nitrosocarbonyl Intermediates with β-Naphthols. Org Lett 2019; 21:2352-2355. [DOI: 10.1021/acs.orglett.9b00628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sumitava Mallik
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Vinod Bhajammanavar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Arka Probha Mukherjee
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
14
|
Banerjee A, Yamamoto H. Direct N-O bond formation via oxidation of amines with benzoyl peroxide. Chem Sci 2019; 10:2124-2129. [PMID: 30881636 PMCID: PMC6383333 DOI: 10.1039/c8sc04996c] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/11/2018] [Indexed: 11/30/2022] Open
Abstract
Herein, we report a general and efficient method for direct N-O bond formation without undesirable C-N bond (amide) formation starting from commercially available amines and benzoyl peroxide. The oxidation of 1,2-diamines to furnish bis-(benzoyloxy)-1,2-diamines is reported for the first time. We found that a significant amount of water (BPO : water = 3 : 1) in combination with Cs2CO3 is necessary to achieve high selectivity and yield. The reaction conditions are applicable to a wide range of 1,2-diamine and 1,2-disubstituted-1,2-diamine substrates. Additionally this method is highly applicable to primary and secondary amines. Further, the present method can access chiral bis-hydroxamic acids and bis-hydroxyl amines in just two steps from 1,2-diamines. The reaction conditions are simple, mild and inert atmosphere free. The synthetic potential of this methodology is further demonstrated in the short synthesis of a chiral BHA ligand.
Collapse
Affiliation(s)
- Amit Banerjee
- Molecular Catalyst Research Center , Chubu University , 1200, Matsumoto-cho , Kasugai , Aichi 487-8501 , Japan . ;
| | - Hisashi Yamamoto
- Molecular Catalyst Research Center , Chubu University , 1200, Matsumoto-cho , Kasugai , Aichi 487-8501 , Japan . ;
| |
Collapse
|
15
|
Zhang J, Fu K, Lin L, Lu Y, Liu X, Feng X. Efficient Catalytic Enantioselective Hydroxyamination of α-Aryl-α-Cyanoacetates with 2-Nitrosopyridines. Chemistry 2018; 24:4289-4293. [PMID: 29457662 DOI: 10.1002/chem.201800592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 12/24/2022]
Abstract
The highly enantioselective totally N-selective hydroxyamination reaction of α-aryl-α-cyanoacetates with 2-nitrosopyridines was realized by using a chiral N,N'-dioxide/Mg(OTf)2 complex as catalyst, which enriches the nitroso chemistry. A variety of 2-cyano-2-[hydroxyl(pyrydin-2-yl)amino]acetates with quaternary stereocenters and potential antibacterial activities were obtained in excellent yields with good to excellent ee values under as low as 0.05 mol % catalyst loading. The products could be easily transformed to useful α-amino amides and 1,2-diamines. Besides, a possible transition state model was proposed to elucidate the origin of the chirality induction.
Collapse
Affiliation(s)
- Jingchuan Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Kai Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Yan Lu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
16
|
Mallik S, Bhajammanavar V, Ramakrishna I, Baidya M. Cross-Aldol Reaction of Activated Carbonyls with Nitrosocarbonyl Intermediates: Stereoselective Synthesis toward α-Hydroxy-β-amino Esters and Amides. Org Lett 2017; 19:3843-3846. [PMID: 28700246 DOI: 10.1021/acs.orglett.7b01721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A practical and flexible strategy toward α-hydroxy-β-amino esters and amides, which are important biological motifs, based on an organocatalytic cross-aldol reaction of in situ-generated nitrosocarbonyl intermediates followed by hydrogenation is presented. The protocol features operational simplicity, high yields, a wide substrate scope, and high regio- and diastereoselectivity profiles. The utility of this method was showcased through the synthesis of bestatin analogues and indole formation.
Collapse
Affiliation(s)
- Sumitava Mallik
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600 036, Tamil Nadu, India
| | - Vinod Bhajammanavar
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600 036, Tamil Nadu, India
| | - Isai Ramakrishna
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
17
|
Reddy MK, Mallik S, Ramakrishna I, Baidya M. Nitrosocarbonyl–Henry and Denitration Cascade: Synthesis of α-Ketoamides and α-Keto Oximes. Org Lett 2017; 19:1694-1697. [DOI: 10.1021/acs.orglett.7b00482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mallu Kesava Reddy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Sumitava Mallik
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Isai Ramakrishna
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
18
|
Abstract
The nitrosocarbonyls (R-CONO) are highly reactive species and remarkable intermediates toward different synthetic targets. This review will cover a research area whose impact in current organic synthesis is constantly increasing in the chemical community. This review represents the first and comprehensive picture on the generation and trapping of nitrosocarbonyls and is solidly built on more than 380 papers. Six different classes of key starting materials such as hydroxamic acids, N-hydroxy carbamates, N-hydroxyureas, nitrile oxides, and 1,2,4-oxadiazole-4-oxides were highlighted. The content of the review surveys all the methods to generate the nitrosocarbonyls through different approaches (oxidative, thermal, photochemical, catalytic, aerobic, and the less common ones) in the light of efficiency, yields, and mildness. The most successful trapping agents employed to catch these fleeting intermediates are reviewed, exploiting their superior dienophilic, enophilic, and electrophilic power. The work is completed by paragraphs dedicated to the detection of the intermediates, theoretical studies, and insights about the challenges and future directions for the field.
Collapse
Affiliation(s)
- Misal Giuseppe Memeo
- Dipartimento di Chimica, Università degli Studi di Pavia , Viale Taramelli 12, 27100 Pavia, Italy
| | - Paolo Quadrelli
- Dipartimento di Chimica, Università degli Studi di Pavia , Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
19
|
Ramakrishna I, Bhajammanavar V, Mallik S, Baidya M. Advanced Nitroso Aldol Reaction: Metal-Free Cross-Coupling of Anilines with Silyl Enol Ethers en Route to α-Amino Ketones. Org Lett 2017; 19:516-519. [DOI: 10.1021/acs.orglett.6b03686] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Isai Ramakrishna
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Vinod Bhajammanavar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Sumitava Mallik
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
20
|
Abstract
This review updates the major progress in the field of enantioselective transformations promoted by chiral magnesium catalysts, covering the literature since 2007, illustrating the power of these green catalysts to promote many types of reactions.
Collapse
|
21
|
Yanagisawa A, Lin Y, Takeishi A, Yoshida K. Enantioselective Nitroso Aldol Reaction Catalyzed by a Chiral Phosphine-Silver Complex. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Akira Yanagisawa
- Molecular Chirality Research Center; Department of Chemistry; Graduate School of Science; Chiba University; Inage 263-8522 Chiba Japan
| | - Yuqin Lin
- Molecular Chirality Research Center; Department of Chemistry; Graduate School of Science; Chiba University; Inage 263-8522 Chiba Japan
| | - Akihiro Takeishi
- Molecular Chirality Research Center; Department of Chemistry; Graduate School of Science; Chiba University; Inage 263-8522 Chiba Japan
| | - Kazuhiro Yoshida
- Molecular Chirality Research Center; Department of Chemistry; Graduate School of Science; Chiba University; Inage 263-8522 Chiba Japan
| |
Collapse
|
22
|
Varshnaya RK, Banerjee P. Construction of Isoxazolidines through Formal [3+2] Cycloaddition Reactions of in situ Generated Nitrosocarbonyls with Donor-Acceptor Cyclopropanes: Synthesis of α-Amino γ-Butyrolactones. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600582] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rohit Kumar Varshnaya
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road 140001 Rupnagar Punjab India
| | - Prabal Banerjee
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road 140001 Rupnagar Punjab India
| |
Collapse
|
23
|
Ramakrishna I, Sahoo H, Baidya M. Brønsted acid mediated N–O bond cleavage for α-amination of ketones through the aromatic nitroso aldol reaction. Chem Commun (Camb) 2016; 52:3215-8. [PMID: 26810365 DOI: 10.1039/c5cc10102f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Brønsted acid mediated N–O bond cleavage for α-amination of ketones has been developed through the nitroso aldol reaction of less-reactive aromatic nitroso compounds and silyl enol ethers having a disilane (–SiMe2TMS) backbone.
Collapse
Affiliation(s)
- Isai Ramakrishna
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Harekrishna Sahoo
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Mahiuddin Baidya
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| |
Collapse
|
24
|
Maji B, Yamamoto H. Catalytic Enantioselective Nitroso Diels–Alder Reaction. J Am Chem Soc 2015; 137:15957-63. [DOI: 10.1021/jacs.5b11273] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Biplab Maji
- Molecular Catalyst Research
Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Hisashi Yamamoto
- Molecular Catalyst Research
Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
25
|
Porter D, Poon BML, Rutledge PJ. Iron complexes of tetramine ligands catalyse allylic hydroxyamination via a nitroso-ene mechanism. Beilstein J Org Chem 2015; 11:2549-56. [PMID: 26734101 PMCID: PMC4685922 DOI: 10.3762/bjoc.11.275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/24/2015] [Indexed: 12/17/2022] Open
Abstract
Iron(II) complexes of the tetradentate amines tris(2-pyridylmethyl)amine (TPA) and N,N'-bis(2-pyridylmethyl)-N,N'-dimethylethane-1,2-diamine (BPMEN) are established catalysts of C-O bond formation, oxidising hydrocarbon substrates via hydroxylation, epoxidation and dihydroxylation pathways. Herein we report the capacity of these catalysts to promote C-N bond formation, via allylic amination of alkenes. The combination of N-Boc-hydroxylamine with either FeTPA (1 mol %) or FeBPMEN (10 mol %) converts cyclohexene to the allylic hydroxylamine (tert-butyl cyclohex-2-en-1-yl(hydroxy)carbamate) in moderate yields. Spectroscopic studies and trapping experiments suggest the reaction proceeds via a nitroso-ene mechanism, with involvement of a free N-Boc-nitroso intermediate. Asymmetric induction is not observed using the chiral tetramine ligand (+)-(2R,2'R)-1,1'-bis(2-pyridylmethyl)-2,2'-bipyrrolidine ((R,R')-PDP).
Collapse
Affiliation(s)
- David Porter
- School of Chemistry F11, The University of Sydney, NSW 2006, Australia
| | - Belinda M-L Poon
- School of Chemistry F11, The University of Sydney, NSW 2006, Australia
| | - Peter J Rutledge
- School of Chemistry F11, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
26
|
Ramakrishna I, Grandhi GS, Sahoo H, Baidya M. The Mukaiyama aldol reaction of in situ generated nitrosocarbonyl compounds: selective C-N bond formation and N-O bond cleavage in one-pot for α-amination of ketones. Chem Commun (Camb) 2015; 51:13976-9. [PMID: 26245149 DOI: 10.1039/c5cc05459a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical protocol for the α-amination of ketones (up to 99% yield) has been developed via the Mukaiyama aldol reaction of in situ generated nitrosocarbonyl compounds. The reaction with silyl enol ethers having a disilane (-SiMe2TMS) backbone proceeded not only with perfect N-selectivity but concomitant N-O bond cleavage was also accomplished. Such a cascade of C-N bond formation and N-O bond cleavage in a single step was heretofore unknown in the field of nitrosocarbonyl chemistry. A very high diastereoselectivity (dr = 19 : 1) was accomplished using (-)-menthol derived chiral nitrosocarbonyl compounds.
Collapse
Affiliation(s)
- Isai Ramakrishna
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | | | | | | |
Collapse
|
27
|
Sandoval D, Samoshin AV, Read de Alaniz J. Asymmetric Electrophilic α-Amination of Silyl Enol Ether Derivatives via the Nitrosocarbonyl Hetero-ene Reaction. Org Lett 2015; 17:4514-7. [PMID: 26317504 DOI: 10.1021/acs.orglett.5b02208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- David Sandoval
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Andrey V. Samoshin
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
28
|
Shibatomi K, Kotozaki M, Sasaki N, Fujisawa I, Iwasa S. Williamson Ether Synthesis with Phenols at a Tertiary Stereogenic Carbon: Formal Enantioselective Phenoxylation of β‐Keto Esters. Chemistry 2015; 21:14095-8. [DOI: 10.1002/chem.201502042] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Kazutaka Shibatomi
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1‐1 Hibarigaoka, Tempaku‐cho, Toyohashi, 441‐8580 (Japan)
| | - Manato Kotozaki
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1‐1 Hibarigaoka, Tempaku‐cho, Toyohashi, 441‐8580 (Japan)
| | - Nozomi Sasaki
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1‐1 Hibarigaoka, Tempaku‐cho, Toyohashi, 441‐8580 (Japan)
| | - Ikuhide Fujisawa
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1‐1 Hibarigaoka, Tempaku‐cho, Toyohashi, 441‐8580 (Japan)
| | - Seiji Iwasa
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1‐1 Hibarigaoka, Tempaku‐cho, Toyohashi, 441‐8580 (Japan)
| |
Collapse
|
29
|
Miles DH, Guasch J, Toste FD. A Nucleophilic Strategy for Enantioselective Intermolecular α-Amination: Access to Enantioenriched α-Arylamino Ketones. J Am Chem Soc 2015; 137:7632-5. [PMID: 26066512 PMCID: PMC5152760 DOI: 10.1021/jacs.5b04518] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The enantioselective addition of anilines to azoalkenes was accomplished through the use of a chiral phosphoric acid catalyst. The resulting α-arylamino hydrazones were obtained in good yields and excellent enantioselectivities and provide access to enantioenriched α-arylamino ketones. A serendipitous kinetic resolution of racemic α-arylamino hydrazones is also described.
Collapse
|
30
|
Maji B, Yamamoto H. Use of In Situ Generated Nitrosocarbonyl Compounds in Catalytic Asymmetric α-Hydroxylation and α-Amination Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2015. [DOI: 10.1246/bcsj.20150040] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Biplab Maji
- Molecular Catalyst Research Center, Chubu University
| | | |
Collapse
|
31
|
Accessing nitrosocarbonyl compounds with temporal and spatial control via the photoredox oxidation of N-substituted hydroxylamines. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.01.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Maji B, Yamamoto H. Copper-Catalyzed Asymmetric Synthesis of Tertiary α-Hydroxy Phosphonic Acid Derivatives with In Situ Generated Nitrosocarbonyl Compounds as the Oxygen Source. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Copper-Catalyzed Asymmetric Synthesis of Tertiary α-Hydroxy Phosphonic Acid Derivatives with In Situ Generated Nitrosocarbonyl Compounds as the Oxygen Source. Angew Chem Int Ed Engl 2014; 53:14472-5. [DOI: 10.1002/anie.201408893] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Indexed: 11/07/2022]
|