1
|
Shukla AK, Mahale A, Choudhary S, Sharma P, Kulkarni OP, Bhattacharya A. Development and Validation of a Fluorogenic Probe for Lysosomal Zinc Release. Chembiochem 2024; 25:e202300783. [PMID: 38038368 DOI: 10.1002/cbic.202300783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
Zinc homeostasis, which allows optimal zinc utilization in diverse life processes, is responsible for the general well-being of human beings. This paper describes developing and validating an easily accessible indole-containing zinc-specific probe in the cellular milieu. The probe was synthesized from readily available starting materials and was subjected to steady-state fluorescence studies. It showed selective sensing behavior towards Zn2+ with reversible binding. The suppression of PET (Photoinduced Electron Transfer) and ESIPT (Excited State Intramolecular Proton Transfer) elicited selectivity, and the detection limit was 0.63 μM (LOQ 6.8 μM). The zinc sensing capability of the probe was also screened in the presence of low molecular weight ligands [LMWLs] and showed interference only with GSH and ATP. It is non-toxic and can detect zinc in different cell lines under various stress conditions such as inflammation, hyperglycemia, and apoptosis. The probe could stain the early and late stages of apoptosis in PAN-2 cells by monitoring the zinc release. Most experiments were conducted without external zinc supplementation, showing its innate ability to detect zinc.
Collapse
Affiliation(s)
- Adarash Kumar Shukla
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Savita Choudhary
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Anupam Bhattacharya
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| |
Collapse
|
2
|
Okuda K, Takashima I, Takagi A. Advances in reaction-based synthetic fluorescent probes for studying the role of zinc and copper ions in living systems. J Clin Biochem Nutr 2023; 72:1-12. [PMID: 36777081 PMCID: PMC9899921 DOI: 10.3164/jcbn.22-92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/01/2022] [Indexed: 12/15/2022] Open
Abstract
Recently, the behavior of essential trace metal elements in living organisms has attracted more and more attention as their dynamics have been found to be tightly regulated by metallothionines, transporters, etc. As the physiological and/or pathological roles of such metal elements are critical, there have been many non-invasive methods developed to determine their cellular functions, mainly by small molecule fluorescent probes. In this review, we focus on probes that detect intracellular zinc and monovalent copper. Both zinc and copper act not only as tightly bound cofactors of enzymes and proteins but also as signaling factors as labile or loosely bound species. Many fluorescent probes that detect mobile zinc or monovalent copper are recognition-based probes, whose detection is hindered by the abundance of intracellular chelators such as glutathione which interfere with the interaction between probe and metal. In contrast, reaction-based probes release fluorophores triggered by zinc or copper and avoid interference from such intracellular chelators, allowing the detection of even low concentrations of such metals. Here, we summarize the current status of the cumulative effort to develop such reaction-based probes and discuss the strategies adopted to overcome their shortcomings.
Collapse
Affiliation(s)
- Kensuke Okuda
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan,To whom correspondence should be addressed. E-mail:
| | - Ippei Takashima
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan
| | - Akira Takagi
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan
| |
Collapse
|
3
|
Goldberg JM, Lippard SJ. Mobile zinc as a modulator of sensory perception. FEBS Lett 2023; 597:151-165. [PMID: 36416529 PMCID: PMC10108044 DOI: 10.1002/1873-3468.14544] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Mobile zinc is an abundant transition metal ion in the central nervous system, with pools of divalent zinc accumulating in regions of the brain engaged in sensory perception and memory formation. Here, we present essential tools that we developed to interrogate the role(s) of mobile zinc in these processes. Most important are (a) fluorescent sensors that report the presence of mobile zinc and (b) fast, Zn-selective chelating agents for measuring zinc flux in animal tissue and live animals. The results of our studies, conducted in collaboration with neuroscientist experts, are presented for sensory organs involved in hearing, smell, vision, and learning and memory. A general principle emerging from these studies is that the function of mobile zinc in all cases appears to be downregulation of the amplitude of the response following overstimulation of the respective sensory organs. Possible consequences affecting human behavior are presented for future investigations in collaboration with interested behavioral scientists.
Collapse
Affiliation(s)
| | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Maity S, Maity AC, Das AK, Bhattacharyya N. Dual-mode chemosensor for the fluorescence detection of zinc and hypochlorite on a fluorescein backbone and its cell-imaging applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2739-2744. [PMID: 35775440 DOI: 10.1039/d2ay00855f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluorescein coupled with 3-(aminomethyl)-4,6-dimethylpyridin-2(1H)-one (FAD) was synthesized for the selective recognition of Zn2+ over other interfering metal ions in acetonitrile/aqueous buffer (1 : 1). Interestingly, there was a significant fluorescence enhancement of FAD in association with Zn2+ at 426 nm by strong chelation-induced fluorescence enhancement (CHEF) without interrupting the cyclic spirolactam ring. A binding stoichiometric ratio of 1 : 2 for the ligand FAD with metal Zn2+ was proven by a Jobs plot. However, the cyclic spirolactam ring was opened by hypochlorite (OCl-) as well as oxidative cleavage of the imine bond, which resulted in the emission enhancement of the wavelength at 520 nm. The binding constant and detection limit of FAD towards Zn2+ were determined to be 1 × 104 M-1 and 1.79 μM, respectively, and the detection limit for OCl- was determined as 2.24 μM. We introduced here a dual-mode chemosensor FAD having both the reactive functionalities for the simultaneous detection of Zn2+ and OCl- by employing a metal coordination (Zn2+) and analytes (OCl-) induced chemodosimetric approach, respectively. Furthermore, for the practical application, we studied the fluorescence imaging inside HeLa cells by using FAD, which demonstrated it can be very useful as a selective and sensitive fluorescent probe for zinc.
Collapse
Affiliation(s)
- Sibaprasad Maity
- Department of Applied Sciences, Haldia Institute of Technology, Hatiberia, Haldia 721657, West Bengal, India.
| | - Annada C Maity
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Avijit Kumar Das
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, Karnataka, 560029, India.
| | | |
Collapse
|
5
|
Horsfall AJ, Chav T, Bruning JB, Abell AD. A turn-on fluorescent PCNA sensor. Bioorg Med Chem Lett 2021; 41:128031. [PMID: 33839250 DOI: 10.1016/j.bmcl.2021.128031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
The solvatochromic amino-acids 4-DMNA or 4-DAPA, were separately introduced at position 147, 150 or 151 of a short p21 peptide (141-155) known to bind sliding clamp protein PCNA. The ability of these peptides, 1a-3a and 1b-3b, to act as a turn-on fluorescent sensor for PCNA was then investigated. The 4-DMNA-containing peptides (1a-3a) displayed up to a 40-fold difference in fluorescence between a polar (Tris buffer) and a hydrophobic solvent (dioxane with 5 mM 18-crown-6), while the 4-DAPA-containing peptides (1b-3b) displayed a significantly enhanced (300-fold) increase in fluorescence from Tris buffer to dioxane with 18-crown-6. SPR analysis of the peptides against PCNA revealed that the 151-substituted peptides 3a and 3b interacted specifically with PCNA, with KD values of 921 nM and 1.28 μM, respectively. Analysis of the fluorescence of these peptides in the presence of increasing concentrations of PCNA revealed a 10-fold change in fluorescence for 3a at 2.5 equivalents of PCNA, compared to only a 3.5-fold change in fluorescence for 3b. Peptide 3a is an important lead for development of a PCNA-selective turn-on fluorescent sensor for application as a cell proliferation sensor to investigate diseases such as cancer.
Collapse
Affiliation(s)
- Aimee J Horsfall
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Theresa Chav
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
6
|
|
7
|
Linden G, Vázquez O. Bioorthogonal Turn-On BODIPY-Peptide Photosensitizers for Tailored Photodynamic Therapy. Chemistry 2020; 26:10014-10023. [PMID: 32638402 PMCID: PMC7496803 DOI: 10.1002/chem.202001718] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) leads to cancer remission via the production of cytotoxic species under photosensitizer (PS) irradiation. However, concomitant damage and dark toxicity can both hinder its use. With this in mind, we have implemented a versatile peptide-based platform of bioorthogonally activatable BODIPY-tetrazine PSs. Confocal microscopy and phototoxicity studies demonstrated that the incorporation of the PS, as a bifunctional module, into a peptide enabled spatial and conditional control of singlet oxygen (1 O2 ) generation. Comparing subcellular distribution, PS confined in the cytoplasmic membrane achieved the highest toxicities (IC50 =0.096±0.003 μm) after activation and without apparent dark toxicity. Our tunable approach will inspire novel probes towards smart PDT.
Collapse
Affiliation(s)
- Greta Linden
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Olalla Vázquez
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| |
Collapse
|
8
|
Sandhu N, Saproo S, Naidu S, Singh AP, Kumar K, Singh AP, Yadav RK. ““Turn‐On” Sensing Behaviour of an In Situ Generated Fluorescein‐Based Probe and Its Preferential Selectivity of Sodium Hypochlorite over
tert
‐Butyl Hydroperoxide in Lung Adenocarcinoma Cells”. ChemistrySelect 2020. [DOI: 10.1002/slct.201903843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Navjot Sandhu
- Department of ChemistryChandigarh University, Gharuan, Mohali, Punjab India
| | - Sheetanshu Saproo
- Center for Biomedical Engineering (CBME)Indian Institute of Technology, Ropar India
| | - Srivatsava Naidu
- Center for Biomedical Engineering (CBME)Indian Institute of Technology, Ropar India
| | - Atul P. Singh
- Department of ChemistryChandigarh University, Gharuan, Mohali, Punjab India
| | - Kamlesh Kumar
- Ubiquitous Analytical TechniquesCSIR-Central Scientific Instruments Organisation, Chandigarh India
| | | | - Rajesh K. Yadav
- Department of Applied Science (Chemistry), Madan Mohan Malaviya
| |
Collapse
|
9
|
Ferrocene appended fluorescein-based ratiomeric fluorescence and electrochemical chemosensor for Fe3+ and Hg2+ ions in aqueous media: Application in real samples analysis. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
A peptide-based fluorescent sensor for selective imaging of glutathione in living cells and zebrafish. Anal Bioanal Chem 2019; 412:481-488. [PMID: 31728594 DOI: 10.1007/s00216-019-02257-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 01/28/2023]
Abstract
Monitoring and imaging glutathione (GSH) in living systems is an essential tool to determine the key roles of GSH in biological pathways, but most fluorescent sensors can only be used in vitro because of their potential biotoxicity. Here, a peptide-based fluorescent sensor, FP, has been successfully designed and synthesized based on the biocompatibility of the peptide backbone and low toxicity. The design strategy of FP contains a specific spatial structure of the peptide sequence which selectively binds to Cu2+, triggering fluorescence quenching. Interestingly, the fluorescence of FP can be fully restored by GSH, due to the strong binding between Cu2+ and the GSH sulfhydryl groups. Finally, the sensor is highly sensitive and selective for imaging GSH both in vitro and in vivo with low toxicity. Thus, FP with its strong "on-off-on" fluorescence changes is a powerful way to image GSH both in cells and zebrafish larvae to study the GSH pathway.
Collapse
|
11
|
Oliveira E, Bértolo E, Núñez C, Pilla V, Santos HM, Fernández‐Lodeiro J, Fernández‐Lodeiro A, Djafari J, Capelo JL, Lodeiro C. Green and Red Fluorescent Dyes for Translational Applications in Imaging and Sensing Analytes: A Dual-Color Flag. ChemistryOpen 2018; 7:9-52. [PMID: 29318095 PMCID: PMC5754553 DOI: 10.1002/open.201700135] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 01/17/2023] Open
Abstract
Red and green are two of the most-preferred colors from the entire chromatic spectrum, and red and green dyes are widely used in biochemistry, immunohistochemistry, immune-staining, and nanochemistry applications. Selective dyes with green and red excitable chromophores can be used in biological environments, such as tissues and cells, and can be irradiated with visible light without cell damage. This critical review, covering a period of five years, provides an overview of the most-relevant results on the use of red and green fluorescent dyes in the fields of bio-, chemo- and nanoscience. The review focuses on fluorescent dyes containing chromophores such as fluorescein, rhodamine, cyanine, boron-dipyrromethene (BODIPY), 7-nitobenz-2-oxa-1,3-diazole-4-yl, naphthalimide, acridine orange, perylene diimides, coumarins, rosamine, Nile red, naphthalene diimide, distyrylpyridinium, benzophosphole P-oxide, benzoresorufins, and tetrapyrrolic macrocycles. Metal complexes and nanomaterials with these dyes are also discussed.
Collapse
Affiliation(s)
- Elisabete Oliveira
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - Emilia Bértolo
- Biomolecular Research GroupSchool of Human and Life SciencesCanterbury Christ Church UniversityCanterburyCT1 1QUUK
| | - Cristina Núñez
- Research UnitHospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS)27003LugoSpain
| | - Viviane Pilla
- Instituto de FísicaUniversidade Federal de Uberlândia-UFUAv. João Naves de Ávila 2121Uberlândia, MG38400-902Brazil
| | - Hugo M. Santos
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - Javier Fernández‐Lodeiro
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - Adrian Fernández‐Lodeiro
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - Jamila Djafari
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - José Luis Capelo
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - Carlos Lodeiro
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| |
Collapse
|
12
|
The zinc paradigm for metalloneurochemistry. Essays Biochem 2017; 61:225-235. [DOI: 10.1042/ebc20160073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/10/2017] [Accepted: 03/28/2017] [Indexed: 01/06/2023]
Abstract
Neurotransmission and sensory perception are shaped through metal ion–protein interactions in various brain regions. The term "metalloneurochemistry" defines the unique field of bioinorganic chemistry focusing on these processes, and zinc has been the leading target of metalloneurochemists in the almost 15 years since the definition was introduced. Zinc in the hippocampus interacts with receptors that dictate ion flow and neurotransmitter release. Understanding the intricacies of these interactions is crucial to uncovering the role that zinc plays in learning and memory. Based on receptor similarities and zinc-enriched neurons (ZENs) in areas of the brain responsible for sensory perception, such as the olfactory bulb (OB), and dorsal cochlear nucleus (DCN), zinc participates in odor and sound perception. Development and improvement of methods which allow for precise detection and immediate manipulation of zinc ions in neuronal cells and in brain slices will be critical in uncovering the synaptic action of zinc and, more broadly, the bioinorganic chemistry of cognition.
Collapse
|
13
|
Xu W, Zeng Z, Jiang JH, Chang YT, Yuan L. Wahrnehmung der chemischen Prozesse in einzelnen Organellen mit niedermolekularen Fluoreszenzsonden. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510721] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wang Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Volksrepublik China
- Department of Chemistry and Medicinal Chemistry Programme; National University of Singapore; Singapore 117543 Singapur
- Laboratory of Bioimaging Probe Development, A*STAR; Singapur
- Department of Chemistry; Stanford University; USA
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Volksrepublik China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Volksrepublik China
| | - Young-Tae Chang
- Department of Chemistry and Medicinal Chemistry Programme; National University of Singapore; Singapore 117543 Singapur
- Laboratory of Bioimaging Probe Development, A*STAR; Singapur
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Volksrepublik China
| |
Collapse
|
14
|
Xu W, Zeng Z, Jiang JH, Chang YT, Yuan L. Discerning the Chemistry in Individual Organelles with Small-Molecule Fluorescent Probes. Angew Chem Int Ed Engl 2016; 55:13658-13699. [DOI: 10.1002/anie.201510721] [Citation(s) in RCA: 526] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Wang Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P.R. China
- Department of Chemistry and Medicinal Chemistry Programme; National University of Singapore; Singapore 117543 Singapore
- Laboratory of Bioimaging Probe Development, A*STAR; Singapore
- Department of Chemistry; Stanford University; USA
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P.R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P.R. China
| | - Young-Tae Chang
- Department of Chemistry and Medicinal Chemistry Programme; National University of Singapore; Singapore 117543 Singapore
- Laboratory of Bioimaging Probe Development, A*STAR; Singapore
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P.R. China
| |
Collapse
|
15
|
Zastrow ML, Radford RJ, Chyan W, Anderson CT, Zhang DY, Loas A, Tzounopoulos T, Lippard SJ. Reaction-Based Probes for Imaging Mobile Zinc in Live Cells and Tissues. ACS Sens 2016; 1:32-39. [PMID: 26878065 PMCID: PMC4732192 DOI: 10.1021/acssensors.5b00022] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/23/2015] [Indexed: 12/22/2022]
Abstract
Chelatable, or mobile, forms of zinc play critical signaling roles in numerous biological processes. Elucidating the action of mobile Zn(II) in complex biological environments requires sensitive tools for visualizing, tracking, and manipulating Zn(II) ions. A large toolbox of synthetic photoinduced electron transfer (PET)-based fluorescent Zn(II) sensors are available, but the applicability of many of these probes is limited by poor zinc sensitivity and low dynamic ranges owing to proton interference. We present here a general approach for acetylating PET-based probes containing a variety of fluorophores and zinc-binding units. The new sensors provide substantially improved zinc sensitivity and allow for incubation of live cells and tissue slices with nM probe concentrations, a significant improvement compared to the μM concentrations that are typically required for a measurable fluorescence signal. Acetylation effectively reduces or completely quenches background fluorescence in the metal-free sensor. Binding of Zn(II) selectively and quickly mediates hydrolytic cleavage of the acetyl groups, providing a large fluorescence response. An acetylated blue coumarin-based sensor was used to carry out detailed analyses of metal binding and metal-promoted acetyl hydrolysis. Acetylated benzoresorufin-based red-emitting probes with different zinc-binding sites are effective for sensing Zn(II) ions in live cells when applied at low concentrations (∼50-100 nM). We used green diacetylated Zinpyr1 (DA-ZP1) to image endogenous mobile Zn(II) in the molecular layer of mouse dorsal cochlear nucleus (DCN), confirming that acetylation is a suitable approach for preparing sensors that are highly specific and sensitive to mobile zinc in biological systems.
Collapse
Affiliation(s)
- Melissa L. Zastrow
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert J. Radford
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wen Chyan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Charles T. Anderson
- Departments of Otolaryngology and Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Daniel Y. Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thanos Tzounopoulos
- Departments of Otolaryngology and Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Hare DJ, New EJ. On the outside looking in: redefining the role of analytical chemistry in the biosciences. Chem Commun (Camb) 2016; 52:8918-34. [DOI: 10.1039/c6cc00128a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Analytical chemistry has much to offer to an improved understanding of biological systems.
Collapse
Affiliation(s)
- Dominic J. Hare
- Elemental Bio-imaging Facility
- University of Technology Sydney
- Broadway
- Australia
- The Florey Institute of Neuroscience and Mental Health
| | | |
Collapse
|
17
|
Zhang DY, Azrad M, Demark-Wahnefried W, Frederickson CJ, Lippard SJ, Radford RJ. Peptide-based, two-fluorophore, ratiometric probe for quantifying mobile zinc in biological solutions. ACS Chem Biol 2015; 10:385-9. [PMID: 25382858 PMCID: PMC4336589 DOI: 10.1021/cb500617c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Small-molecule fluorescent sensors
are versatile agents for detecting
mobile zinc in biology. Capitalizing on the abundance of validated
mobile zinc probes, we devised a strategy for repurposing existing
intensity-based sensors for quantitative applications. Using solid-phase
peptide synthesis, we conjugated a zinc-sensitive Zinpyr-1 derivative
and a zinc-insensitive 7-hydroxycoumarin derivative onto opposite
ends of a rigid P9K peptide scaffold to create HcZ9, a
ratiometric fluorescent probe for mobile zinc. A plate reader-based
assay using HcZ9 was developed, the accuracy of which is comparable
to that of atomic absorption spectroscopy. We investigated zinc accumulation
in prostatic cells and zinc levels in human seminal fluid. When normal
and tumorigenic cells are bathed in zinc-enriched media, cellular
mobile zinc is buffered and changes slightly, but total zinc levels
increase significantly. Quantification of mobile and total zinc levels
in human seminal plasma revealed that the two are positively correlated
with a Pearson’s coefficient of 0.73.
Collapse
Affiliation(s)
- Daniel Y. Zhang
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Maria Azrad
- Department of Nutrition Sciences and §Comprehensive Cancer
Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Wendy Demark-Wahnefried
- Department of Nutrition Sciences and §Comprehensive Cancer
Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | | | - Stephen J. Lippard
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert J. Radford
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Choi YA, Keem JO, Kim CY, Yoon HR, Heo WD, Chung BH, Jung Y. A novel copper-chelating strategy for fluorescent proteins to image dynamic copper fluctuations on live cell surfaces. Chem Sci 2014; 6:1301-1307. [PMID: 29560216 PMCID: PMC5811147 DOI: 10.1039/c4sc03027c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/18/2014] [Indexed: 01/08/2023] Open
Abstract
A strong but selective copper-binding tripeptide was employed to develop a highly sensitive and selective copper(ii) protein reporter.
Copper is indispensable in most aerobic organisms although it is toxic if unregulated as illustrated in many neurodegenerative diseases. To elucidate the mechanisms underlying copper release from cells, a membrane-targeting reporter which can compete with extracellular copper-binding molecules is highly desirable. However, engineering a reporter protein to provide both high sensitivity and selectivity for copper(ii) has been challenging, likely due to a lack of proper copper(ii)-chelating strategies within proteins. Here, we report a new genetically encoded fluorescent copper(ii) reporter by employing a copper-binding tripeptide derived from human serum albumin (HSA), which is one of the major copper-binding proteins in extracellular environments. Optimized insertion of the tripeptide into the green fluorescent protein leads to rapid fluorescence quenching (up to >85% change) upon copper-binding, while other metal ions have no effect. Furthermore, the high binding affinity of the reporter enables reliable copper detection even in the presence of competing biomolecules such as HSA and amyloid beta peptides. We also demonstrate that our reporter proteins can be used to visualize dynamic copper fluctuations on living HeLa cell surfaces.
Collapse
Affiliation(s)
- Yoon-Aa Choi
- BioNano Health Guard Research Center , 125 Gwahak-ro, Yuseong-gu , Daejeon , 305-806 , Republic of Korea . ; ; Tel: +82-42-860-4442
| | - Joo Oak Keem
- BioNano Health Guard Research Center , 125 Gwahak-ro, Yuseong-gu , Daejeon , 305-806 , Republic of Korea . ; ; Tel: +82-42-860-4442
| | - Cha Yeon Kim
- Graduate School of Nanoscience and Technology , Korea Advanced Institute of Science and Technology (KAIST) , Republic of Korea
| | - Hye Ryeon Yoon
- Department of Chemistry , KAIST , 291 Daehak-ro, Yuseong-gu , Daejeon , 305-701 , Republic of Korea . ; ; Tel: +82-42-350-2817
| | - Won Do Heo
- Department of Biological Sciences , KAIST , Republic of Korea
| | - Bong Hyun Chung
- BioNano Health Guard Research Center , 125 Gwahak-ro, Yuseong-gu , Daejeon , 305-806 , Republic of Korea . ; ; Tel: +82-42-860-4442
| | - Yongwon Jung
- Department of Chemistry , KAIST , 291 Daehak-ro, Yuseong-gu , Daejeon , 305-701 , Republic of Korea . ; ; Tel: +82-42-350-2817
| |
Collapse
|