1
|
Yao Z, Song Z, Yin S, Huang W, Gao T, Yan P, Zhou Y, Li H. Dispersion Forces-Driven Hierarchical Assembly of Protein-Like Lanthanide Octamers and Emergent CPL. Chemistry 2024:e202403976. [PMID: 39607003 DOI: 10.1002/chem.202403976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 11/29/2024]
Abstract
Hierarchical self-assembly driven by non-covalent interactions is a prevalent strategy employed by nature to construct sophisticated biomacromolecules, such as proteins. However, the construction of protein-like superstructures that rely on weaker dispersion forces-driven hierarchical assembly remains largely unexplored. Here, we report the first example of dispersion forces driving the high-order assembly of the lanthanide trinuclear circular helicate [HNEt₃]₃[Eu₃(LL)₆] (ΔΔΔ-1) into a protein-like lanthanide octamer ((ΔΔΔ-1)₈-2). Within the octamer, the forty-eight (48) menthol groups on the ligands and eighty-four (84) 1,4-dioxane solvent molecules contribute to enhanced dispersion forces through conformational adaptation and size-matching effects. These enhanced dispersion forces not only drive the formation of the hierarchical superstructure but also result in a four-level chirality transfer from the menthol to the octamer. Benefiting from the homochirality of Eu3+, the octamer is endowed the strong circularly polarized emission (|glum|=0.34, Φoverall=41 %). This understanding of how dispersion forces drive hierarchical self-assembly provides a foundation for the directed fabrication of more fascinating superstructures.
Collapse
Affiliation(s)
- Zhiwei Yao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Ziye Song
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Sen Yin
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Wenru Huang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Yanyan Zhou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Hongfeng Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| |
Collapse
|
2
|
Sasani Ghamsari M, Arghavan M. [Nd(NTA)2·H 2O] 3- complex with high-efficiency emission in NIR region. Heliyon 2024; 10:e33139. [PMID: 39005923 PMCID: PMC11239591 DOI: 10.1016/j.heliyon.2024.e33139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
The distinctive photophysical characteristics possessed by lanthanides, including europium, neodymium, and ytterbium, render them adaptable molecular tools for studying biological systems. Specifically, their enduring photoluminescence, precise emission spectra, and significant Stokes shifts allow for experiments not achievable with organic fluorophores or fluorescent proteins. Moreover, the capacity of these metal ions for luminescence resonance energy transfer and photon upconversion extends the potential applications of lanthanide probes even further. In this research, a new [Nd(NTA)2·H2O]3- complex was synthesized and its optical properties were assessed using practical characterization techniques such as UV-Vis absorption, photoluminescence, and FTIR. It was discovered that when the sample was excited by a 357 nm wavelength, it emitted a strong line at 1076 nm with a full-width at half maximum (FWHM) of 10 nm, a phenomenon not previously documented. The Judd-Ofelt theory and its intensity parameters were utilized in a theoretical approach to determine the fluorescence branching ratio and the radiative lifetime of the [Nd(NTA)2·H2O]3- complex. The absorption and luminescence spectra were then analyzed accordingly. Experimental findings validated the potential applications of the prepared sample in bioimaging.
Collapse
Affiliation(s)
- M. Sasani Ghamsari
- Photonics and Quantum Technologies Research School, Nuclear Science and Technology Research Institute, 11155-3436, Tehran, Iran
| | - M.M. Arghavan
- Department of Physics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran
| |
Collapse
|
3
|
Caffrey DF, Gorai T, Rawson B, Martínez‐Calvo M, Kitchen JA, Murray NS, Kotova O, Comby S, Peacock RD, Stachelek P, Pal R, Gunnlaugsson T. Ligand Chirality Transfer from Solution State to the Crystalline Self-Assemblies in Circularly Polarized Luminescence (CPL) Active Lanthanide Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307448. [PMID: 38447160 PMCID: PMC11095229 DOI: 10.1002/advs.202307448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Indexed: 03/08/2024]
Abstract
The synthesis of a family of chiral and enantiomerically pure pyridyl-diamide (pda) ligands that upon complexation with europium [Eu(CF3SO3)3] result in chiral complexes with metal centered luminescence is reported; the sets of enantiomers giving rise to both circular dichroism (CD) and circularly polarized luminescence (CPL) signatures. The solid-state structures of these chiral metallosupramolecular systems are determined using X-ray diffraction showing that the ligand chirality is transferred from solution to the solid state. This optically favorable helical packing arrangement is confirmed by recording the CPL spectra from the crystalline assembly by using steady state and enantioselective differential chiral contrast (EDCC) CPL Laser Scanning Confocal Microscopy (CPL-LSCM) where the two enantiomers can be clearly distinguished.
Collapse
Affiliation(s)
- David F. Caffrey
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
| | - Tumpa Gorai
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
- Present address:
Department of Polymers and Functional MaterialsCSIR‐Indian Institute of Chemical TechnologyHyderabad500007India
| | - Bláithín Rawson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
| | - Miguel Martínez‐Calvo
- Departamento de Química Inorgánica, Facultade de QuímicaCampus VidaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Jonathan A. Kitchen
- Chemistry, Institute of Natural and Mathematical SciencesMassey UniversityAuckland0632New Zealand
| | - Niamh S. Murray
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
| | - Oxana Kotova
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
- AMBER (Advanced Materials and Bioengineering Research) CentreTrinity College DublinThe University of DublinDublin2Ireland
| | - Steve Comby
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
| | | | | | - Robert Pal
- Department of ChemistryDurham UniversityDurhamDH1 3LEUK
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
- AMBER (Advanced Materials and Bioengineering Research) CentreTrinity College DublinThe University of DublinDublin2Ireland
| |
Collapse
|
4
|
O'Neil AT, Chalard A, Malmström J, Kitchen JA. White light and colour-tunable emission from a single component europium-1,8-naphthalimide thin film. Dalton Trans 2023; 52:2255-2261. [PMID: 36757868 DOI: 10.1039/d2dt03644d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The synthesis and fabrication of spin coated films of a new Eu3+ complex [Eu(1)3] derived from the 1,8-naphthalimide containing ligand 1H is presented. The complex is multi-emissive displaying blue emission from the 1,8-naphthalimide fluorophore and red emission from the Eu3+ centre in both solution-state and solid-state. This allows the overall emission to be tuned by changing the excitaton wavelength, where varing degrees of red and blue emission intensity alter the overall emission colour from blue, to red and including white-light emission. The complex was spin-coated onto quartz slides giving 134 nm thick coatings that retained the multi-emissive and colour tunable properties. Overall, resulting in a colour-tunable system which in solution, solid, and thin film states can alter the overall colour from deep red to dark blue.
Collapse
Affiliation(s)
- Alex T O'Neil
- School of Natural Sciences, Massey University, Auckland, New Zealand.
| | - Anaïs Chalard
- Department of Chemical and Materials Engineering, University of Auckland, Auckland 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Jenny Malmström
- Department of Chemical and Materials Engineering, University of Auckland, Auckland 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Jonathan A Kitchen
- School of Natural Sciences, Massey University, Auckland, New Zealand. .,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
5
|
Sidler E, Malinčík J, Prescimone A, Mayor M. Induced axial chirality by a tight belt: naphthalene chromophores fixed in a 2,5-substituted cofacial para-phenylene-ethynylene framework. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:16199-16207. [PMID: 34912562 PMCID: PMC8614465 DOI: 10.1039/d1tc02180j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/28/2021] [Indexed: 06/14/2023]
Abstract
We report the design of a synthetically easy accessible axial chirality-inducing framework for a chromophore of choice. The scaffold consists of two basic para-phenylene-ethynylene backbones separated by laterally placed corner units. Substitution with an inherently achiral chromophore at the 2 and 5 positions of the central phenylene excitonically couples the chromophore associated transition and thereby results in chiroptical properties. Using 6-methoxynaphthalene as a model chromophore, we present the synthesis, structural analysis and spectroscopic investigation of the framework. The chiral framework was synthesized in three straightforward synthetic steps and fully characterized. The obtained racemic compounds were resolved using HPLC and assignment of the absolute configuration was performed using the exciton chirality method, crystallography and DFT calculations. This simple yet potent framework might prove useful to enrich the structural diversity of chiral materials.
Collapse
Affiliation(s)
- Eric Sidler
- Department of Chemistry, University of Basel, St. Johanns-Ring 19 Basel 4056 Switzerland https://www.chemie1.unibas.ch/∼mayor/
| | - Juraj Malinčík
- Department of Chemistry, University of Basel, St. Johanns-Ring 19 Basel 4056 Switzerland https://www.chemie1.unibas.ch/∼mayor/
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, St. Johanns-Ring 19 Basel 4056 Switzerland https://www.chemie1.unibas.ch/∼mayor/
| | - Marcel Mayor
- Department of Chemistry, University of Basel, St. Johanns-Ring 19 Basel 4056 Switzerland https://www.chemie1.unibas.ch/∼mayor/
- Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P. O. Box 3640 Karlsruhe 76021 Germany
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University (SYSU) Guangzhou 510275 China
| |
Collapse
|
6
|
O’Neil AT, Zhang N, Harrison JA, Goldup SM, Kitchen JA. Synthesis, photophysical and assembly studies of novel luminescent lanthanide(III) complexes of 1,2,3-triazolyl-pyridine-2,6-dicarboxamide-based ligands. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1955120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alex T. O’Neil
- Chemistry, School of Natural and Computational Sciences, Massey University, Auckland, NZ, New Zealand
| | - Ningjin Zhang
- School of Chemistry, University of Southampton, Highfield, Southampton, UK
| | - John A. Harrison
- Chemistry, School of Natural and Computational Sciences, Massey University, Auckland, NZ, New Zealand
| | - Stephen M. Goldup
- School of Chemistry, University of Southampton, Highfield, Southampton, UK
| | - Jonathan A. Kitchen
- Chemistry, School of Natural and Computational Sciences, Massey University, Auckland, NZ, New Zealand
| |
Collapse
|
7
|
Fradgley JD, Frawley AT, Pal R, Parker D. Striking solvent dependence of total emission and circularly polarised luminescence in coordinatively saturated chiral europium complexes: solvation significantly perturbs the ligand field. Phys Chem Chem Phys 2021; 23:11479-11487. [PMID: 33959741 DOI: 10.1039/d1cp01686e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Examination of total emission and circularly polarised luminescence (CPL) spectra of three 9-coordinate Eu(iii) complexes with well-defined speciation shows that the ligand fields of these C3 symmetric complexes are extremely sensitive to solvent polarity, even when solvent is not present in the first coordination sphere. The energies, intensities, and (for CPL) the sign of some transitions vary with solvent polarity. These observations are rationalised by analysis of the factors that control total and circularly polarised emission, and have important implications for design of responsive luminescent Ln(iii) probes.
Collapse
Affiliation(s)
- Jack D Fradgley
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Andrew T Frawley
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Robert Pal
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - David Parker
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
8
|
Yao Z, Zhou Y, Gao T, Yan P, Li H. Ancillary ligand modulated stereoselective self-assembly of triple-stranded Eu(iii) helicate featuring circularly polarized luminescence. RSC Adv 2021; 11:10524-10531. [PMID: 35423583 PMCID: PMC8695889 DOI: 10.1039/d1ra01583d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/30/2022] Open
Abstract
Creating optically pure metal assemblies is a hot research topic in the realms of chiral supramolecules. Here, three new triple-stranded europium(iii) helicates Eu2L3(L′)2 [L = 4,4′-bis(4,4,4-trifluoro-1,3-dioxobutyl)diphenyl sulphide; L′ = 1,10-phenanthroline (Phen) or R/S-2,2′-bis(diphenylphosphinyl)-1,1′-binaphthyl (R/S-BINAPO)] were synthesized in order to investigate the effects of ancillary ligands on controlling the stereoselective self-assembly of lanthanide helicates. X-ray single crystal structure analysis showed that Eu2L3(Phen)2 crystalized in an achiral space group P1̄ with the equivalent amount of P and M helicates in one single cell. The isolated Eu2L3(S-BINAPO)2 and Eu2L3(R-BINAPO)2 were verified to be enantiopure by 1H, 19F, 31P NMR and DOSY NMR analyses. Additionally, the mirror-image CD spectra also demonstrated the successful syntheses of the enantiomers and the presence of an effective chirality transformation from BINAPO to achiral L. Furthermore, the perfect mirror-image circularly polarized luminescence (CPL) spectra of Eu2L3(S-BINAPO)2 and Eu2L3(R-BINAPO)2 indicated the existence of the excited state chirality of the Eu3+ center associated with |glum| values reaching 0.112. In addition, the photophysical properties of three helicates were also discussed. Chiral ancillary ligands (R/S-BINAPO) modulated the stereoselective self-assembly of lanthanide helicates, which presented strong CPL with |glum| values up to 0.112 and high luminescence quantum yield up to 34%.![]()
Collapse
Affiliation(s)
- Zhiwei Yao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, P. R. China, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 P. R. China
| | - Yanyan Zhou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, P. R. China, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 P. R. China
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, P. R. China, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 P. R. China
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, P. R. China, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 P. R. China
| | - Hongfeng Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, P. R. China, School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 P. R. China
| |
Collapse
|
9
|
Arrico L, Di Bari L, Zinna F. Quantifying the Overall Efficiency of Circularly Polarized Emitters. Chemistry 2020; 27:2920-2934. [DOI: 10.1002/chem.202002791] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Lorenzo Arrico
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
10
|
Minami H, Itamoto N, Watanabe W, Li Z, Nakamura K, Kobayashi N. Chiroptical property enhancement of chiral Eu(III) complex upon association with DNA-CTMA. Sci Rep 2020; 10:18917. [PMID: 33144619 PMCID: PMC7609531 DOI: 10.1038/s41598-020-75808-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
DNA-based materials have attracted much attention due to their unique photo-functional properties and potential applications in various fields such as luminescent and biological systems, nanodevices, etc. In this study, the photophysical properties of a chiral Eu(III) complex, namely (Eu(D-facam)3), within DNA films were extensively investigated. The enhancement of photoluminescence (more than 25-folds increase of luminescence quantum yield) and degree of circularly polarization in luminescence (glum = − 0.6) was observed upon interaction with DNA. Various photophysical analyses suggested that the emission enhancement was mainly due to an increase of the sensitization efficiency (high ηsens) from the ligands to Eu(III) and suppression of the vibrational deactivation upon immobilization onto the DNA molecule. From CD and VCD measurements, it was suggested that the coordination structure of Eu(D-facam)3 was affected by the interaction with DNA, suggesting that the structural change of Eu(D-facam)3 contributed to the improvement of its luminescent properties.
Collapse
Affiliation(s)
- Haruki Minami
- Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Natsumi Itamoto
- Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Wataru Watanabe
- Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Ziying Li
- Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kazuki Nakamura
- Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Norihisa Kobayashi
- Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
11
|
Chang VY, Calvinho KUD, Tovar RC, Johnson VA, Straus DA, Muller G. Photophysical and Chiroptical Properties of the Enantiomers of N, N'-Bis(1-phenylpropyl)-2,6-pyridinecarboxamide and their Chiral 9-Coordinate Ln 3+ Complexes. Eur J Inorg Chem 2020; 2020:3815-3828. [PMID: 33162787 PMCID: PMC7640761 DOI: 10.1002/ejic.202000606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 01/19/2023]
Abstract
The R,R and S,S enantiomers of N,N'-bis(1-phenylpropyl)-2,6-pyridinedicarboxamide, L(Et), react with Ln3+ ions (Ln = La, Eu, Gd, and Tb) to give stable [Ln((R,R)- and (S,S)-L(Et))3]3+ in anhydrous acetonitrile solution, as evidenced by various spectroscopic measurements, including NMR and luminescence titrations. In addition to the characteristic Eu3+ and Tb3+ luminescence bands, the steady-state and time-resolved luminescence spectra of the aforementioned complexes show the residual ligand-centered emission of the 1ππ* to 3ππ* states, indicating an incomplete intersystem crossing (ISC) transfer from the 1ππ* to 3ππ* and ligand-to-Ln3+ energy transfer, respectively. The high circularly polarized luminescence (CPL) activity of [Eu(L(Et))3]3+ confirms that using a single enantiomer of L(Et) induces the preferential formation of one chiral [Eu(L(Et))3]3+ complex, consistent with the [EuL 3]3+ complexes formed with other ligands derived from a 2,6-pyridine dicarboxamide moiety. Furthermore, the CPL sign patterns of complexes with (R,R) or (S,S) enantiomer of L(Et) are consistent with the CPL sign pattern of related [LnL 3]3+ complexes with the (R,R) or (S,S) enantiomer of the respective ligands in this family.
Collapse
Affiliation(s)
- Victoria Y Chang
- V. Y. Chang, K. U. D. Calvinho, R. C. Tovar, V. A. Johnson, Prof. D. A. Straus, Prof. G. Muller Department of Chemistry, San José State University, One Washington Square, San José, CA, 95192-0101, USA
| | - Karin U D Calvinho
- V. Y. Chang, K. U. D. Calvinho, R. C. Tovar, V. A. Johnson, Prof. D. A. Straus, Prof. G. Muller Department of Chemistry, San José State University, One Washington Square, San José, CA, 95192-0101, USA
| | - Roberto C Tovar
- V. Y. Chang, K. U. D. Calvinho, R. C. Tovar, V. A. Johnson, Prof. D. A. Straus, Prof. G. Muller Department of Chemistry, San José State University, One Washington Square, San José, CA, 95192-0101, USA
| | - Victoria A Johnson
- V. Y. Chang, K. U. D. Calvinho, R. C. Tovar, V. A. Johnson, Prof. D. A. Straus, Prof. G. Muller Department of Chemistry, San José State University, One Washington Square, San José, CA, 95192-0101, USA
| | - Daniel A Straus
- V. Y. Chang, K. U. D. Calvinho, R. C. Tovar, V. A. Johnson, Prof. D. A. Straus, Prof. G. Muller Department of Chemistry, San José State University, One Washington Square, San José, CA, 95192-0101, USA
| | - Gilles Muller
- V. Y. Chang, K. U. D. Calvinho, R. C. Tovar, V. A. Johnson, Prof. D. A. Straus, Prof. G. Muller Department of Chemistry, San José State University, One Washington Square, San José, CA, 95192-0101, USA
| |
Collapse
|
12
|
Xu L, Wang C, Li Y, Xu X, Zhou L, Liu N, Wu Z. Crystallization‐Driven Asymmetric Helical Assembly of Conjugated Block Copolymers and the Aggregation Induced White‐light Emission and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lei Xu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Chao Wang
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Yan‐Xiang Li
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Xun‐Hui Xu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Li Zhou
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Na Liu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Zong‐Quan Wu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| |
Collapse
|
13
|
Xu L, Wang C, Li YX, Xu XH, Zhou L, Liu N, Wu ZQ. Crystallization-Driven Asymmetric Helical Assembly of Conjugated Block Copolymers and the Aggregation Induced White-light Emission and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2020; 59:16675-16682. [PMID: 32543000 DOI: 10.1002/anie.202006561] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 12/12/2022]
Abstract
Controlling the self-assembly morphology of π-conjugated block copolymer is of great interesting. Herein, amphiphilic poly(3-hexylthiophene)-block-poly(phenyl isocyanide)s (P3HT-b-PPI) copolymers composed of π-conjugated P3HT and optically active helical PPI segments were readily prepared. Taking advantage of the crystallizable nature of P3HT and the chirality of the helical PPI segment, crystallization-driven asymmetric self-assembly (CDASA) of the block copolymers lead to the formation of single-handed helical nanofibers with controlled length, narrow dispersity, and well-defined helicity. During the self-assembly process, the chirality of helical PPI was transferred to the supramolecular assemblies, giving the helical assemblies large optical activity. The single-handed helical assemblies of the block copolymers exhibited interesting white-light emission and circularly polarized luminescence (CPL). The handedness and dissymmetric factor of the induced CPL can be finely tuned through the variation on the helicity and length of the helical nanofibers.
Collapse
Affiliation(s)
- Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Chao Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Yan-Xiang Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| |
Collapse
|
14
|
Lyczko K, Rode JE, Dobrowolski JC. Chiral Lanthanide Complexes with l- and d-Alanine: An X-ray and Vibrational Circular Dichroism Study. Molecules 2020; 25:E2729. [PMID: 32545530 PMCID: PMC7357152 DOI: 10.3390/molecules25122729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/17/2023] Open
Abstract
A whole series of [Ln(H2O)4(Ala)2]26+ dimeric cationic lanthanide complexes with both L- and D-alanine enantiomers was synthesized. The single-crystal X-ray diffraction at 100 and 292 K shows the formation of two types of dimers (I and II) in crystals. Between the dimer centers, the alanine molecules behave as bridging (μ2-O,O'-) and chelating bridging (μ2-O,O,O'-) ligands. The first type of bridge is present in dimers I, while both bridge forms can be observed in dimers II. The IR and vibrational circular dichroism (VCD) spectra of all L- and D-alanine complexes were registered in the 1750-1250 cm-1 range as KBr pellets. Despite all the studied complexes are exhibiting similar crystal structures, the spectra reveal correlations or trends with the Ln-O1 distances which exemplify the lanthanide contraction effect in the IR spectra. This is especially true for the positions and intensities of some IR bands. Unexpectedly, the ν(C=O) VCD bands are quite intense and their composed shapes reveal the inequivalence of the C=O vibrators in the unit cell which vary with the lanthanide. Unlike in the IR spectra, the ν(C=O) VCD band positions are only weakly correlated with the change of Ln and the VCD intensities at most show some trends. Nevertheless, this is the first observation of the lanthanide contraction effect in the VCD spectra. Generally, for the heavier lanthanides (Ln: Dy-Lu), the VCD band maxima are very close to each other and the mirror reflection of the band of two enantiomers is usually better than that of the lighter Lns. DFT calculations show that the higher the multiplicity the higher the stability of the system. Actually, the molecular geometry in crystals (at 100 K) is well predicted based on the highest-spin structures. Also, the simulated IR and VCD spectra strongly depend on the Ln electron configuration but the best overall agreement was reached for the Lu complex, which is the only system with a fully filled f-shell.
Collapse
Affiliation(s)
- Krzysztof Lyczko
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (J.E.R.); (J.C.D.)
| | | | | |
Collapse
|
15
|
Han G, Zhou Y, Yao Y, Cheng Z, Gao T, Li H, Yan P. Preorganized helical chirality controlled homochiral self-assembly and circularly polarized luminescence of a quadruple-stranded Eu 2L 4 helicate. Dalton Trans 2020; 49:3312-3320. [PMID: 32101214 DOI: 10.1039/d0dt00062k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
β-Diketones are one of the most widely used ligands for sensitizing the luminescence of lanthanide complexes due to their excellent sensitization abilities. However, the difficulties in introducing chiral groups to take part in the electronic transitions of conjugated systems limit their application in lanthanide circularly polarized luminescence (CPL) materials. In view of the inherent chirality of the helical structure, herein, a pair of homochiral quadruple-stranded helicates, Eu2L4, is assembled based on chiral bis-β-diketonate ligands, wherein the two point chirality centers in the spacer preorganize the helical conformation of the ligand (3S,4S)/(3R,4R)-3,4-bis(4,4'-bis(4,4,4-trifluoro-1,3-dioxobutyl)phenoxyl)-1-benzylpyrrolidine, LSS/LRR. X-ray crystallographic analyses reveal that the R,R configurations of the chiral carbons in the spacer induce the M helical sense of the ligand, while the S,S configurations induce the P helical sense. Through the comprehensive spectral characterization in combination with semiempirical geometry optimization using the Sparkle/RM1 model, it is confirmed that the preorganized ligands successfully control the homochirality of the helicates. Moreover, the mirror-image CD and CPL spectra and NMR measurements confirm the formation of enantiomeric pairs and their diastereopurities in solution. Detailed photophysical and chiroptical characterization studies reveal that the helicates not only exhibit intense circularly polarized luminescence (CPL) with |glum| values reaching 0.10, but also show a high luminescence quantum yield of 34%. This study effectively combines the helical chirality of the helicates with the excellent sensitization ability of the β-diketones, providing an effective strategy for the syntheses of chiral lanthanide CPL materials.
Collapse
Affiliation(s)
- Guoying Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Ji L, Zhao Y, Tao M, Wang H, Niu D, Ouyang G, Xia A, Liu M. Dimension-Tunable Circularly Polarized Luminescent Nanoassemblies with Emerging Selective Chirality and Energy Transfer. ACS NANO 2020; 14:2373-2384. [PMID: 32027478 DOI: 10.1021/acsnano.9b09584] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The selective interplay between dimensional morphology transition and signal transfer is an important feature for both nanomaterials and biosystems. While most of those reported examples considered either dimensional transition or signal transfer, the integrated interplay or selectivity for these two aspects in single self-assembled system has been rarely studied. Here, we report that a positively charged chiral π-building block could self-assemble into multidimensional nanostructures, which showed tunable circularly polarized luminescence (CPL). Impressively, when these CPL-active multidimensional structures interacted with two achiral dyes (positively charged ThT and negatively charged CNA), 3D nanocubes and 0D nanospheres showed neither chirality transfer nor energy transfer, while 2D nanoplates could successfully trigger a selective chirality or energy transfer depending on the charge type of acceptor dyes, which then emitted an enhanced CPL signal. This work demonstrated rational design of charged π-building block for the construction of dimension controllable and selective signal transfer self-assembly system, which might deepen the understanding the interplay of dimensional structures and signal transfer functions in natural and nano systems.
Collapse
Affiliation(s)
- Lukang Ji
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Yang Zhao
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
- College of Pharmacy , Hebei University , Baoding 071002 , P.R. China
| | - Min Tao
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Hanxiao Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Dian Niu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Guanghui Ouyang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Andong Xia
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
- Collaborative Innovation Centre of Chemical Science and Engineering , Nankai University , Tianjin 300072 , P.R. China
| |
Collapse
|
17
|
Barry DE, Kitchen JA, Pandurangan K, Savyasachi AJ, Peacock RD, Gunnlaugsson T. Formation of Enantiomerically Pure Luminescent Triple-Stranded Dimetallic Europium Helicates and Their Corresponding Hierarchical Self-Assembly Formation in Protic Polar Solutions. Inorg Chem 2020; 59:2646-2650. [DOI: 10.1021/acs.inorgchem.0c00058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Dawn E. Barry
- School of Chemistry and Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2 D02 PN40, Ireland
| | - Jonathan A. Kitchen
- Chemistry, School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Komala Pandurangan
- School of Chemistry and Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2 D02 PN40, Ireland
| | - Aramballi Jayant Savyasachi
- School of Chemistry and Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2 D02 PN40, Ireland
| | - Robert D. Peacock
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2 D02 PN40, Ireland
- Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin, Dublin 2 D02 PN40, Ireland
| |
Collapse
|
18
|
Sasaki Y, Kojima S, Hamedpour V, Kubota R, Takizawa SY, Yoshikawa I, Houjou H, Kubo Y, Minami T. Accurate chiral pattern recognition for amines from just a single chemosensor. Chem Sci 2020. [DOI: 10.1039/d0sc00194e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The current work proposes a novel method for accurate pattern recognition of (mono- and di-) amines and determination of enantiomeric excess (ee) using molecular self-assembly.
Collapse
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science
- The University of Tokyo
- Tokyo
- Japan
| | - Soya Kojima
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Tokyo 192-0397
- Japan
| | - Vahid Hamedpour
- Institute of Industrial Science
- The University of Tokyo
- Tokyo
- Japan
| | - Riku Kubota
- Institute of Industrial Science
- The University of Tokyo
- Tokyo
- Japan
| | - Shin-ya Takizawa
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo
- Japan
| | - Isao Yoshikawa
- Institute of Industrial Science
- The University of Tokyo
- Tokyo
- Japan
| | - Hirohiko Houjou
- Institute of Industrial Science
- The University of Tokyo
- Tokyo
- Japan
| | - Yuji Kubo
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Tokyo 192-0397
- Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science
- The University of Tokyo
- Tokyo
- Japan
| |
Collapse
|
19
|
Minami H, Miyazato M, Li Z, Nakamura K, Kobayashi N. Alkyl ammonium ion-induced drastic emission enhancement of Eu( D-facam) 3 in 1-butanol. Chem Commun (Camb) 2020; 56:13532-13535. [DOI: 10.1039/d0cc04856a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Drastic enhancements in both emission intensity and circular polarization of a Eu(iii) complex were achieved in 1-butanol solution in the presence of alkylammonium ions.
Collapse
Affiliation(s)
- Haruki Minami
- Graduate School of Engineering
- Chiba University
- Inage-ku
- Japan
| | - Mayu Miyazato
- Graduate School of Engineering
- Chiba University
- Inage-ku
- Japan
| | - Ziying Li
- Graduate School of Engineering
- Chiba University
- Inage-ku
- Japan
| | | | | |
Collapse
|
20
|
Wong HY, Lo WS, Yim KH, Law GL. Chirality and Chiroptics of Lanthanide Molecular and Supramolecular Assemblies. Chem 2019. [DOI: 10.1016/j.chempr.2019.08.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Barry DE, Kitchen JA, Mercs L, Peacock RD, Albrecht M, Gunnlaugsson T. Chiral luminescent lanthanide complexes possessing strong (samarium, Sm III) circularly polarised luminescence (CPL), and their self-assembly into Langmuir-Blodgett films. Dalton Trans 2019; 48:11317-11325. [PMID: 31271402 DOI: 10.1039/c9dt02003a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The lanthanide directed self-assembly of chiral amphiphilic 2,6-pyridinedicarboxylic acid based ligands 1 and 2 with various Ln(CF3SO3)3 (Ln = TbIII, SmIII, LuIII, DyIII) salts was studied in CH3CN and evaluated with the expected 1 : 3 and 1 : 1 Ln : Ligand species forming in solution. Ligand chirality was retained and transferred, as depicted by circular dichroism (CD) and circularly polarised luminescence (CPL) measurements (for TbIII and SmIII), to the lanthanide centre upon complexation with high dissymmetry factor values for the SmIII complexes obtained (glum = -0.44 and 0.29 and 0.45 and -0.23 for the 4G5/2→6H5/2 and the 4G5/2→6H7/2 transitions of Sm·13 and Sm·23, respectively). The ability of the complexes to form stable Langmuir monolayers at the air-water interface was also established while Langmuir-Blodgett films of Tb·L3 and Sm·L3 exhibited lanthanide luminescent emission.
Collapse
Affiliation(s)
- Dawn E Barry
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Jonathan A Kitchen
- Chemistry, School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Laszlo Mercs
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Robert D Peacock
- School of Chemistry, University of Glasgow, Glasgow, G 12 8QQ, Scotland, UK
| | - Martin Albrecht
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| |
Collapse
|
22
|
Starck M, MacKenzie LE, Batsanov AS, Parker D, Pal R. Excitation modulation of Eu:BPEPC based complexes as low-energy reference standards for circularly polarised luminescence (CPL). Chem Commun (Camb) 2019; 55:14115-14118. [DOI: 10.1039/c9cc07290j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The enantiomers of [EuL3]·3Cl serve as effective reference complexes for the calibration of circularly polarised luminescence (CPL) spectrometers.
Collapse
Affiliation(s)
| | | | | | - David Parker
- Department of Chemistry
- Durham University
- Durham
- UK
| | - Robert Pal
- Department of Chemistry
- Durham University
- Durham
- UK
| |
Collapse
|
23
|
Bradberry SJ, Dee G, Kotova O, McCoy CP, Gunnlaugsson T. Luminescent lanthanide (Eu(iii)) cross-linked supramolecular metallo co-polymeric hydrogels: the effect of ligand symmetry. Chem Commun (Camb) 2019; 55:1754-1757. [DOI: 10.1039/c8cc08888h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two lanthanide luminescent naphthyl-dipicolinic amide (dpa) methacrylate monomers for the synthesis of grafted supramolecular co-polymer gels (hydrogels), and their use as additional crosslinks in robust covalently cross-linked HEMA hydrogels is presented.
Collapse
Affiliation(s)
- Samuel J. Bradberry
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Garret Dee
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Oxana Kotova
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | | | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| |
Collapse
|
24
|
Taniguchi T, Tsubouchi A, Imai Y, Yuasa J, Oguri H. Chiroptical Inversion of Europium(III) Complexes by Changing a Remote Stereogenic Center of a C2-Symmetric Bispyrrolidinoindoline Manifold. J Org Chem 2018; 83:15284-15296. [DOI: 10.1021/acs.joc.8b02550] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tomoaki Taniguchi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Akira Tsubouchi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yuki Imai
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Hiroki Oguri
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
25
|
Pescitelli G, Lüdeke S, Chamayou AC, Marolt M, Justus V, Górecki M, Arrico L, Di Bari L, Islam MA, Gruber I, Enamullah M, Janiak C. Broad-Range Spectral Analysis for Chiral Metal Coordination Compounds: (Chiro)optical Superspectrum of Cobalt(II) Complexes. Inorg Chem 2018; 57:13397-13408. [PMID: 30339376 DOI: 10.1021/acs.inorgchem.8b01932] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chiroptical broad-range spectral analysis extending from UV to mid-IR was employed to study a family of Co(II) N-(1-(aryl)ethyl)salicylaldiminato Schiff base complexes with pseudotetrahedral geometry associated with chirality-at-metal of the Δ/Λ type. While common chiral organic compounds have well-separated absorption and circular dichroism spectra (CD) in the UV/vis and IR regions, chiral Co(II) complexes feature an almost unique continuum of absorption and CD bands, which cover in sequence the UV, visible, near-IR (NIR), and IR regions of the electromagnetic spectrum. They can be collected in a single (chiro)optical superspectrum ranging from the UV (230 nm, 5.4 eV) to the mid-IR (1000 cm-1, 0.12 eV), which offers a fingerprint of the structure and stereochemistry of the metal complexes. Each region of the superspectrum contributes to one piece of information: the NIR-CD region, in combination with TDDFT calculations, allows a reliable assignment of the metal-centered chirality; the UV-CD region facilitates the analysis of the Δ/Λ diastereomeric equilibrium in solution; and the IR-VCD region contains a combination of low-lying metal-centered electronic states (LLES) and ligand-centered vibrations and displays characteristically enhanced and monosignate VCD bands. Circular dichroism in the NIR and IR regions is crucial to reveal the presence of d-d transitions of the Co(II) core which, due to the electric-dipole forbidden character, would be otherwise overlooked in the corresponding absorption spectra.
Collapse
Affiliation(s)
- Gennaro Pescitelli
- Department of Chemistry and Industrial Chemistry , University of Pisa , 56126 Pisa , Italy
| | - Steffen Lüdeke
- Institute of Pharmaceutical Sciences , University of Freiburg , D-79104 Freiburg , Germany
| | | | - Marija Marolt
- Institute of Pharmaceutical Sciences , University of Freiburg , D-79104 Freiburg , Germany
| | - Viktor Justus
- Institute of Pharmaceutical Sciences , University of Freiburg , D-79104 Freiburg , Germany
| | - Marcin Górecki
- Department of Chemistry and Industrial Chemistry , University of Pisa , 56126 Pisa , Italy.,Institute of Organic Chemistry , Polish Academy of Sciences , 01-224 Warsaw , Poland
| | - Lorenzo Arrico
- Department of Chemistry and Industrial Chemistry , University of Pisa , 56126 Pisa , Italy
| | - Lorenzo Di Bari
- Department of Chemistry and Industrial Chemistry , University of Pisa , 56126 Pisa , Italy
| | | | - Irina Gruber
- Institute of Inorganic Chemistry and Structural Chemistry , University of Düsseldorf , D-40225 Düsseldorf , Germany
| | - Mohammed Enamullah
- Department of Chemistry , Jahangirnagar University , Dhaka - 1342 , Bangladesh
| | - Christoph Janiak
- Institute of Inorganic Chemistry and Structural Chemistry , University of Düsseldorf , D-40225 Düsseldorf , Germany
| |
Collapse
|
26
|
Kotova O, Comby S, Pandurangan K, Stomeo F, O'Brien JE, Feeney M, Peacock RD, McCoy CP, Gunnlaugsson T. The effect of the linker size in C 2-symmetrical chiral ligands on the self-assembly formation of luminescent triple-stranded di-metallic Eu(iii) helicates in solution. Dalton Trans 2018; 47:12308-12317. [PMID: 30113616 DOI: 10.1039/c8dt02753f] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral lanthanide-based supramolecular structures have gained significant importance in view of their application in imaging, sensing and other functional purposes. We have designed chiral C2-symmetrical ligands (L) based on the use of two 2,6-pyridine-dicarboxylic-amide moieties (pda), that differ from one another by the nature of the diamine spacer groups (from 1,3-phenylenedimethanamine (1(S,S), 2(R,R)) and benzene-1,3-diamine (3(S,S), 4(R,R)) to much bulkier 4,4'-(cyclohexane-1,1-diyl)bis(2,6-dimethylaniline) (5(S,S), 6(R,R))) between these two pda units. The self-assembly between L and Eu(iii) ions were investigated in CH3CN solution at low concentration whereby the changes in the absorbance, fluorescence and Eu(iii)-centred emission spectra allowed us to model the binding equilibria occurring in the solution to the presence of [Eu:L2], [Eu2:L2], [Eu2:L3] assemblies and reveal their high binding constant values. The self-assembly in solution were also studied at higher concentration by following the changes in the 1H NMR spectra of the ligands upon Eu(iii) addition, as well as by using MALDI-MS of the isolated solid state complexes. The chiroptical properties of the ligands were used in order to study the structural changes upon self-assembly between the ligands and Eu(iii) ions using circular dichroism (CD) and circularly polarised luminescence (CPL) spectroscopies. The photophysical properties of [Eu2:L3] complexes were evaluated in solution and showed a decrease of luminescence quantum yield when going from the ligand with smaller (1(S,S)) to bulkier (5(S,S)) linker from ∼5.8% to ∼2.6%. While mass-spectrometry revealed the possible formation of trinucler assemblies such as [Eu3:L3] and [Eu3:L2].
Collapse
Affiliation(s)
- Oxana Kotova
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu D, Zhou Y, Zhang Y, Li H, Chen P, Sun W, Gao T, Yan P. Chiral BINAPO-Controlled Diastereoselective Self-Assembly and Circularly Polarized Luminescence in Triple-Stranded Europium(III) Podates. Inorg Chem 2018; 57:8332-8337. [PMID: 29943980 DOI: 10.1021/acs.inorgchem.8b00986] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chiral lanthanide helical architectures have received intense attentions in recent years because of their potential applications as chiral probes and sensors and as circularly polarized luminescence (CPL) materials. However, stereoselectivity control in the self-assembly of lanthanide helicate is challenging due to the poor stereochemical preference and variable coordination numbers of Ln(III) ions. Herein, we reported the employing chiral ancillary ligand R/S-BINAPO to induce achiral tripodal ligand to form a pair of homochiral lanthanide triple-helical podates [Eu(TTEA)((R/S)-BINAPO); R/S-1] {(R/S)-BINAPO = ( R/ S)-2,2'-bis(diphenylphosphoryl)-1,1'-binaphthyl; TTEA = tris[(4-(4,4,4-trifluoro-1,3-dioxobutyl)-benzamido)ethyl]amine}. X-ray crystallographic analysis for rac-1 reveals that the chirality of BINAPO is transferred during the self-assembly process to give either P or M helical architectures in podates. The 1H and 31P NMR and circular dichroism measurements confirm the diastereopurity of the assemblies in solution. A detailed optical and chiroptical characterization reveals that the luminescent enantiopure podates not only exhibit intense CPL with | glum| values reaching 0.072 but also show high luminescence quantum yields of 32.8%. Our results provide a feasible strategy for designing homochiral helical lanthanide supramolecular architecture and synthesizing excellent CPL materials.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education; School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , P. R. China
| | - Yanyan Zhou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education; School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , P. R. China
| | - Yuan Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education; School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , P. R. China
| | - Hongfeng Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education; School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , P. R. China
| | - Peng Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education; School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , P. R. China
| | - Wenbin Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education; School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , P. R. China
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education; School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , P. R. China
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education; School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , P. R. China
| |
Collapse
|
28
|
Górecki M, Carpita L, Arrico L, Zinna F, Di Bari L. Chiroptical methods in a wide wavelength range for obtaining Ln 3+ complexes with circularly polarized luminescence of practical interest. Dalton Trans 2018; 47:7166-7177. [PMID: 29774898 DOI: 10.1039/c8dt00865e] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied enantiopure chiral trivalent lanthanide (Ln3+ = La3+, Sm3+, Eu3+, Gd3+, Tm3+, and Yb3+) complexes with two fluorinated achiral tris(β-diketonate) ligands (HFA = hexafluoroacetylacetonate and TTA = 2-thenoyltrifluoroacetonate), incorporating a chiral bis(oxazolinyl)pyridine (PyBox) unit as a neutral ancillary ligand, by the combined use of optical and chiroptical methods, ranging from UV to IR both in absorption and circular dichroism (CD), and including circularly polarized luminescence (CPL). Ultimately, all the spectroscopic information is integrated into a total and a chiroptical super-spectrum, which allows one to characterize a multidimensional chemical space, spanned by the different Ln3+ ions, the acidity and steric demand of the diketone and the chirality of the PyBox ligand. In all cases, the Ln3+ ions endow the systems with peculiar chiroptical properties, either allied to f-f transitions or induced by the metal onto the ligand. In more detail, we found that Sm3+ complexes display interesting CPL features, which partly superimpose and partly integrate the more common Eu3+ properties. Especially, in the context of security tags, the pair Sm/Eu may be a winning choice for chiroptical barcoding.
Collapse
Affiliation(s)
- Marcin Górecki
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124 Pisa, Italy.
| | | | | | | | | |
Collapse
|
29
|
Chiral transcription in self-assembled tetrahedral Eu 4L 6 chiral cages displaying sizable circularly polarized luminescence. Nat Commun 2017; 8:1128. [PMID: 29066720 PMCID: PMC5783948 DOI: 10.1038/s41467-017-01025-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 08/11/2017] [Indexed: 12/26/2022] Open
Abstract
Predictable stereoselective formation of supramolecular assembly is generally believed to be an important but complicated process. Here, we show that point chirality of a ligand decisively influences its supramolecular assembly behavior. We designed three closely related chiral ligands with different point chiralities, and observe their self-assembly into europium (Eu) tetrametallic tetrahedral cages. One ligand exhibits a highly diastereoselective assembly into homochiral (either ΔΔΔΔ or ΛΛΛΛ) Eu tetrahedral cages whereas the two other ligands, with two different approaches of loosened point chirality, lead to a significant breakdown of the diastereoselectivity to generate a mixture of (ΔΔΔΔ and ΛΛΛΛ) isomers. The cages are highly emissive (luminescence quantum yields of 16(1) to 18(1)%) and exhibit impressive circularly polarized luminescence properties (|g lum|: up to 0.16). With in-depth studies, we present an example that correlates the nonlinear enhancement of the chiroptical response to the nonlinearity dependence on point chirality.
Collapse
|
30
|
Kitchen JA. Lanthanide-based self-assemblies of 2,6-pyridyldicarboxamide ligands: Recent advances and applications as next-generation luminescent and magnetic materials. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Barry DE, Hawes CS, Byrne JP, la Cour Poulsen B, Ruether M, O'Brien JE, Gunnlaugsson T. A folded [2 × 2] metallo-supramolecular grid from a bis-tridentate (1,2,3-triazol-4-yl)-picolinamide (tzpa) ligand. Dalton Trans 2017; 46:6464-6472. [PMID: 28470292 DOI: 10.1039/c7dt01533j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A flexible ditopic ligand 1 containing two N,N,O-tridentate (1,2,3-triazol-4-yl)-picolinamide chelating pockets is reported and the formation of multimetallic architectures is explored in the solid and the solution phase. The self-assembled ZnII complex [Zn4(1)4](ClO4)8 exhibited a folded [2 × 2] square grid supramolecular architecture that selectively assembled in MeCN solution as shown using various spectroscopic techniques. The closely related FeII complex shows equivalent behaviour in the solid state, while a discrete dinuclear species [Cu2(NO3)41]·5MeCN was the sole product observed in the solid state from the reaction between 1 and CuII under similar conditions.
Collapse
Affiliation(s)
- Dawn E Barry
- School of Chemistry and Trinity Biomedical Sciences Institute, The University of Dublin, Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | | | | | | | |
Collapse
|
32
|
Exploring the Effect of Ligand Structural Isomerism in Langmuir-Blodgett Films of Chiral Luminescent EuIIISelf-Assemblies. Chemistry 2016; 22:9709-23. [DOI: 10.1002/chem.201600560] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 11/07/2022]
|
33
|
Tobin G, Comby S, Zhu N, Clérac R, Gunnlaugsson T, Schmitt W. Towards multifunctional lanthanide-based metal-organic frameworks. Chem Commun (Camb) 2016. [PMID: 26207535 DOI: 10.1039/c5cc04928h] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report the synthesis, structure and physicochemical attributes of a new holmium(III)-based metal-organic framework whose 3D network structure gives rise to porosity; the reported structure-type can be varied using a range of different lanthanide ions to tune the photophysical properties and produce ligand-sensitised near-infrared (NIR) and visible light emitters.
Collapse
Affiliation(s)
- Gerard Tobin
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), University of Dublin, Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
34
|
Barry DE, Caffrey DF, Gunnlaugsson T. Lanthanide-directed synthesis of luminescent self-assembly supramolecular structures and mechanically bonded systems from acyclic coordinating organic ligands. Chem Soc Rev 2016; 45:3244-74. [PMID: 27137947 DOI: 10.1039/c6cs00116e] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein some examples of the use of lanthanide ions (f-metal ions) to direct the synthesis of luminescent self-assembly systems (architectures) will be discussed. This area of lanthanide supramolecular chemistry is fast growing, thanks to the unique physical (magnetic and luminescent) and coordination properties of the lanthanides, which are often transferred to the resulting supermolecule. The emphasis herein will be on systems that are luminescent, and hence, generated by using either visibly emitting ions (such as Eu(III), Tb(III) and Sm(III)) or near infrared emitting ions (like Nd(III), Yb(III) and Er(III)), formed through the use of templating chemistry, by employing structurally simple ligands, possessing oxygen and nitrogen coordinating moieties. As the lanthanides have high coordination requirements, their use often allows for the formation of coordination compounds and supramolecular systems such as bundles, grids, helicates and interlocked molecules that are not synthetically accessible through the use of other commonly used templating ions such as transition metal ions. Hence, the use of the rare-earth metal ions can lead to the formation of unique and stable species in both solution and in the solid state, as well as functional and responsive structures.
Collapse
Affiliation(s)
- Dawn E Barry
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | | | | |
Collapse
|
35
|
Poulsen BC, Estalayo-Adrián S, Blasco S, Bright SA, Kelly JM, Williams DC, Gunnlaugsson T. Luminescent ruthenium polypyridyl complexes with extended ‘dppz’ like ligands as DNA targeting binders and cellular agents. Dalton Trans 2016; 45:18208-18220. [DOI: 10.1039/c6dt03792e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA-binding and phototoxicity of Ru(ii) complexes with ligands derived from pyrazinodipyridophenazine and either phen or TAP as ancillary ligands are reported.
Collapse
Affiliation(s)
- Bjørn C. Poulsen
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Sandra Estalayo-Adrián
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Salvador Blasco
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Sandra A. Bright
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - John M. Kelly
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - D. Clive Williams
- School of Biochemistry and Immunology and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| |
Collapse
|
36
|
Byrne JP, Martínez-Calvo M, Peacock RD, Gunnlaugsson T. Chiroptical Probing of Lanthanide-Directed Self-Assembly Formation Using btp Ligands Formed in One-Pot Diazo-Transfer/Deprotection Click Reaction from Chiral Amines. Chemistry 2015; 22:486-90. [DOI: 10.1002/chem.201504257] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 12/23/2022]
|
37
|
Wen HR, Xie XR, Liu SJ, Bao J, Wang FF, Liu CM, Liao JS. Homochiral luminescent lanthanide dinuclear complexes derived from a chiral carboxylate. RSC Adv 2015. [DOI: 10.1039/c5ra14559g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A family of chiral Ln2 clusters based on a chiral monocarboxylate ligand has been successfully constructed via a diffusion method, and Eu, Tb and Dy analogues display good luminescent properties.
Collapse
Affiliation(s)
- He-Rui Wen
- School of Metallurgy and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Xin-Rong Xie
- School of Metallurgy and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Sui-Jun Liu
- School of Metallurgy and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Jun Bao
- School of Metallurgy and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Feng-Feng Wang
- Beijing City Key Laboratory of Polymorphic Drugs
- Center of Pharmaceutical Polymorphs
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences
- Center for Molecular Science
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Jin-Sheng Liao
- School of Metallurgy and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| |
Collapse
|
38
|
Bradberry SJ, Savyasachi AJ, Peacock RD, Gunnlaugsson T. Quantifying the formation of chiral luminescent lanthanide assemblies in an aqueous medium through chiroptical spectroscopy and generation of luminescent hydrogels. Faraday Discuss 2015; 185:413-31. [DOI: 10.1039/c5fd00105f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein we present the synthesis and the photophysical evaluation of water-soluble chiral ligands (2·(R,R) and 2·(S,S)) and their application in the formation of lanthanide directed self-assembled structures. These pyridine-2,6-dicarboxylic amide based ligands, possessing two naphthalene moieties as sensitising antennae, that can be used to populate the excited state of lanthanide ions, were structurally modified using 3-propanesultone and caesium carbonate, allowing for the incorporation of a water-solubilising sulfonate motif. We show, using microwave synthesis, that Eu(iii) forms chiral complexes in 1 : 3 (M : L) stoichiometries (Eu·[2·(R,R)]3 and Eu·[2·(S,S)]3) with these ligands, and that the red Eu(iii)-centred emission arising from these complexes has quantum yields (Φtot) of 12% in water. Both circular dichroism (CD) and circular polarised luminescence (CPL) analysis show that the complexes are chiral; giving rise to characteristic CD and CPL signatures for both the Λ and the Δ complexes, which both possess characteristic luminescence dissymmetry factors (glum), describing the structure in solution. The self-assembly process was also monitored in situ by observing the changes in the ligand absorption and fluorescence emission, as well as in the Eu(iii) luminescence. The change, fitted using non-linear regression analysis, demonstrated high binding affinity for Eu(iii) which in part can be assigned to being driven by additional hydrophobic effects. Moreover, using CD spectroscopy, the changes in the chiroptical properties of both (2·(R,R) and 2·(S,S)) were monitored in real time. Fitting the changes in the CD spectra allowed for the step-wise binding constants to be determined for these assemblies; these matched well with those determined from both the ground and the excited state changes. Both the ligands and the Eu(iii) complexes were then used in the formation of hydrogels; the Eu(iii)-metallogels were luminescent to the naked-eye.
Collapse
Affiliation(s)
- Samuel J. Bradberry
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- University of Dublin
- Dublin 2
- Ireland
| | - Aramballi Jayant Savyasachi
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- University of Dublin
- Dublin 2
- Ireland
| | | | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- University of Dublin
- Dublin 2
- Ireland
| |
Collapse
|