1
|
Afrasiabian N, Balasubramanian V, Denniston C. Dispersion and orientation patterns in nanorod-infused polymer melts. J Chem Phys 2023; 158:054902. [PMID: 36754792 DOI: 10.1063/5.0122174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Introducing nanorods into a polymeric matrix can enhance the physical and mechanical properties of the resulting material. In this paper, we focus on understanding the dispersion and orientation patterns of nanorods in an unentangled polymer melt, particularly as a function of nanorod concentration, using molecular dynamics simulations. The system is comprised of flexible polymer chains and multi-thread nanorods that are equilibrated in the NPT ensemble. All interactions are purely repulsive except for those between polymers and rods. Results with attractive vs repulsive polymer-rod interactions are compared and contrasted. The concentration of rods has a direct impact on the phase behavior of the system. At lower concentrations, rods phase separate into nematic clusters, whereas at higher concentrations more isotropic and less structured rod configurations are observed. A detailed examination of the conformation of the polymer chains near the rod surface shows extension of the chains along the director of the rods (especially within clusters). The dispersion and orientation of the nanorods are a result of the competition between depletion entropic forces responsible for the formation of rod clusters, the enthalpic effects that improve mixing of rods and polymer, and entropic losses of polymers interpenetrating rod clusters.
Collapse
Affiliation(s)
- Navid Afrasiabian
- Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada, N6A 3K7
| | - Venkat Balasubramanian
- Department of Applied Mathematics, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada, N6A 5B7
| | - Colin Denniston
- Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada, N6A 3K7
| |
Collapse
|
2
|
Arrigo R, Malucelli G, Mantia FPL. Effect of the Elongational Flow on the Morphology and Properties of Polymer Systems: A Brief Review. Polymers (Basel) 2021; 13:3529. [PMID: 34685288 PMCID: PMC8541082 DOI: 10.3390/polym13203529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
Polymer-processing operations with dominating elongational flow have a great relevance, especially in several relevant industrial applications. Film blowing, fiber spinning and foaming are some examples in which the polymer melt is subjected to elongational flow during processing. To gain a thorough knowledge of the material-processing behavior, the evaluation of the rheological properties of the polymers experiencing this kind of flow is fundamental. This paper reviews the main achievements regarding the processing-structure-properties relationships of polymer-based materials processed through different operations with dominating elongational flow. In particular, after a brief discussion on the theoretical features associated with the elongational flow and the differences with other flow regimes, the attention is focused on the rheological properties in elongation of the most industrially relevant polymers. Finally, the evolution of the morphology of homogeneous polymers, as well as of multiphase polymer-based systems, such as blends and micro- and nano-composites, subjected to the elongational flow is discussed, highlighting the potential and the unique characteristics of the processing operations based on elongation flow, as compared to their shear-dominated counterparts.
Collapse
Affiliation(s)
- Rossella Arrigo
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Viale Teresa Michel 5, 15121 Alessandria, Italy; (R.A.); (G.M.)
- National Interuniversity Consortium of Materials Science and Technology, Via Giusti 9, 50121 Firenze, Italy
| | - Giulio Malucelli
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Viale Teresa Michel 5, 15121 Alessandria, Italy; (R.A.); (G.M.)
- National Interuniversity Consortium of Materials Science and Technology, Via Giusti 9, 50121 Firenze, Italy
| | - Francesco Paolo La Mantia
- National Interuniversity Consortium of Materials Science and Technology, Via Giusti 9, 50121 Firenze, Italy
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
3
|
Pan X, Bai L, Pan C, Liu Z, Ramakrishna S. Design, Fabrication and Applications of Electrospun Nanofiber-Based Surface-Enhanced Raman Spectroscopy Substrate. Crit Rev Anal Chem 2021; 53:289-308. [PMID: 34284659 DOI: 10.1080/10408347.2021.1950522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an advanced and powerful analysis tool. Due to the advantages of high sensitivity, high resolution, and nondestructive testing, it has been widely used in physics, chemistry, material science and other fields. In recent years, substantial progress has been made in developing flexible platforms for the design and fabrication of SERS substrates. One important kind of the flexible platforms is based on electrospun nanofibers. Electrospun nanofibers not only have unique advantages such as easy preparation, high porosity and large specific surface area, but also can increase the number of hotspots when combined with precious metal nanomaterials, thereby enhancing the SERS signal and expanding the application scope. In this review, we firstly focus on two strategies for the fabrication of metal nanostructure decorated in/on the electrospun nanofibers, namely in-situ and ex-situ. Then the applications of these SERS substrates in the fields of quantitative analysis, monitoring chemical reactions and recyclable detection are introduced in detail. Finally, the challenges as well as perspectives are presented to offer a guideline for the future exploration of these SERS substrates. We expect that it will provide new inspiration for the development of electrospun nanofiber-based SERS substrates.
Collapse
Affiliation(s)
- Xue Pan
- School of Materials Science and Engineering, Ocean University of China, Qingdao, China
| | - Lu Bai
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, Qingdao, China
| | - Chengcheng Pan
- School of Materials Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhicheng Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, China.,Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Zhmayev Y, Shebert GL, Pinge S, Kaur P, Liu H, Joo YL. Non-enthalpic enhancement of spatial distribution and orientation of CNTs and GNRs in polymer nanofibers. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Preparation and characterization of poly(lactic acid)/sisal fiber bio-composites under continuous elongation flow. JOURNAL OF POLYMER ENGINEERING 2018. [DOI: 10.1515/polyeng-2018-0075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, poly(lactic acid) (PLA) matrix bio-composites reinforced with various quantities of sisal fibers (SFs) (from 10% to 50% in weight) were fabricated by using a self-made vane mixer, which can generate continuous elongation flow. The morphology, crystallization, and mechanical properties of PLA/SF bio-composites under continuous elongation flow were investigated. Scanning electron microscopic images showed that SFs were uniformly dispersed in the matrix and oriented along the extrusion direction. Meanwhile, it was found that the diameter of SFs decreased from 250 to 20 μm, which certified that continuous elongation flow remarkably affected the separation of elementary fibers from fiber bundles. Wide-angle X-ray diffraction and differential scanning calorimetry measurements indicated that the addition of SFs promoted the crystallization of PLA as well as increased the crystallinity of PLA. The mechanical tests exhibited that both impact strength and tensile modulus were significantly enhanced (about 64% and 94.63%, respectively) with SFs loading at 40%, which was due to the well dispersion and separation of elementary fibers.
Collapse
|
6
|
Shen J, Li X, Zhang L, Lin X, Li H, Shen X, Ganesan V, Liu J. Mechanical and Viscoelastic Properties of Polymer-Grafted Nanorod Composites from Molecular Dynamics Simulation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00183] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jianxiang Shen
- Department of Polymer Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Xue Li
- Department of Chemical and Textile Engineering, Jiaxing University Nanhu College, Jiaxing 314001, P. R. China
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiangsong Lin
- Department of Polymer Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Haidong Li
- Department of Polymer Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Xiaojun Shen
- Department of Polymer Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Venkat Ganesan
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
7
|
Liu Z, Jia L, Yan Z, Bai L. Plasma-treated electrospun nanofibers as a template for the electrostatic assembly of silver nanoparticles. NEW J CHEM 2018. [DOI: 10.1039/c8nj01151f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Silver nanoparticles assembled on a plasma treated electrospun nanofiber membrane could show excellent SERS effect.
Collapse
Affiliation(s)
- Zhicheng Liu
- School of Materials Science and Engineering
- North University of China
- Taiyuan 030051
- China
- Department of Mechanical Engineering
| | - Lu Jia
- School of Materials Science and Engineering
- North University of China
- Taiyuan 030051
- China
| | - Zhaodong Yan
- School of Materials Science and Engineering
- North University of China
- Taiyuan 030051
- China
| | - Lu Bai
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- China
| |
Collapse
|
8
|
Liu Z, Yan Z, Bai L. Electrospun nanofiber templated assembly of hybrid nanoparticles. RSC Adv 2018; 8:9344-9352. [PMID: 35541839 PMCID: PMC9078683 DOI: 10.1039/c8ra00665b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/28/2018] [Indexed: 01/02/2023] Open
Abstract
Assembling nanoparticles into or onto a three-dimensional template such as an electrospun nanofiber membrane has attracted considerable attention since this composite material has great potential in many applications. We report here that hybrid noble metal nanoparticles could be readily assembled both into and onto electrospun nanofibers using simple mixing and immersion steps. It is observed that small gold nanospheres were well distributed within the nanofiber, while other nanoparticles such as big gold nanospheres, gold nanorods and palladium nanocubes were uniformly decorated on the surface of the nanofibers. Moreover, the hybrid nanoparticle-assembled nanofiber membrane showed impressive SERS and catalytic performance based on the type of the assembled nanoparticles. It is believed that other nanomaterials could also be assembled with nanofiber membranes using this facile strategy. Hybrid noble metal nanoparticles could be readily assembled both into and onto electrospun nanofibers.![]()
Collapse
Affiliation(s)
- Zhicheng Liu
- School of Materials Science and Engineering
- North University of China
- Taiyuan 030051
- China
- Department of Mechanical Engineering
| | - Zhaodong Yan
- School of Materials Science and Engineering
- North University of China
- Taiyuan 030051
- China
| | - Lu Bai
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- China
| |
Collapse
|
9
|
Barbero DR, Boulanger N. Ultralow Percolation Threshold in Nanoconfined Domains. ACS NANO 2017; 11:9906-9913. [PMID: 28949506 DOI: 10.1021/acsnano.7b03851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-assembled percolated networks play an important role in many advanced electronic materials and devices. In nanocarbon composites, decreasing the percolation threshold ϕc is of paramount importance to reduce nanotube bundling, minimize material resources and costs, and enhance charge transport. Here we demonstrate that three-dimensional nanoconfinement in single-wall carbon nanotube/polymer nanocomposites produces a strong reduction in ϕc, reaching the lowest value ever reported in this system of ϕc ≈ 1.8 × 10-5 wt % and 4-5 orders of magnitude lower than the theoretical statistical percolation threshold ϕstat. Moreover, a change in network resistivity and electrical conduction was observed with increased confinement, and a simple resistive model is used to accurately estimate the difference in ϕc in the confined networks. These results are explained in terms of networks' size, confinement, and tube orientation as determined by atomic force microscopy, electrical conductivity measurements, and polarized Raman spectroscopy. Our findings provide important insight into nanoscale percolated networks and should find application in electronic nanocomposites and devices.
Collapse
Affiliation(s)
- David R Barbero
- Nano-Engineered Materials and Organic Electronics Laboratory, Umeå Universitet , Umeå 90187, Sweden
| | - Nicolas Boulanger
- Nano-Engineered Materials and Organic Electronics Laboratory, Umeå Universitet , Umeå 90187, Sweden
| |
Collapse
|
10
|
Park JH, Rutledge GC. 50th Anniversary Perspective: Advanced Polymer Fibers: High Performance and Ultrafine. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00864] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jay Hoon Park
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Gregory C. Rutledge
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Zhmayev Y, Pinge S, Shoorideh G, Shebert GL, Kaur P, Liu H, Joo YL. Controlling the Placement of Spherical Nanoparticles in Electrically Driven Polymer Jets and its Application to Li-Ion Battery Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5543-5553. [PMID: 27562374 DOI: 10.1002/smll.201601878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/16/2016] [Indexed: 06/06/2023]
Abstract
Employing circumferentially uniform air flow through the sheath layer of the concentric coaxial nozzle, the gas-assisted electrospinning (GAES) utilizes both high electric field and controlled air flow to produce nanofibers. The ability to tailor the distribution of various nanofillers (1.85-12.92 vol% of spherical SiO2 and Si nanoparticles) in a polyvinyl alcohol jet is demonstrated by varying airflow rates in GAES. The distribution of nanofillers is measured from transmission electron microscopy and is analyzed using an image processing technique to perform the dispersion area analysis and obtain the most probable separation between nanoparticles using fast Fourier transform (FFT). The analysis in this study indicates an additional 350% improvement in dispersion area with the application of high but controlled airflow, and a 75 percent decrease in separation between nanoparticles from the FFT. The experiments in this study are in good agreement with a coarse-grained MD simulation prediction for a polymer nanocomposite system subjected to extensional deformation. Lastly, utilizing the sheath layer air flow in production of Li-battery anode material, a 680 mAh g-1 improvement is observed in capacity for nanofibers spun via GAES compared to ES at the same Si NP loading, which is associated with better dispersion of the electrochemically active nanoparticles.
Collapse
Affiliation(s)
- Yevgen Zhmayev
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Shubham Pinge
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Ghazal Shoorideh
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - George L Shebert
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Prabhleen Kaur
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Hongshen Liu
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Yong Lak Joo
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
12
|
Shebert GL, Lak Joo Y. Effect of elongational flow on immiscible polymer blend/nanoparticle composites: a molecular dynamics study. SOFT MATTER 2016; 12:6132-6140. [PMID: 27356215 DOI: 10.1039/c6sm00619a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using coarse-grained nonequilibrium molecular dynamics, the dynamics of a blend of the equal ratio of immiscible polymers mixed with nanoparticles (NP) are simulated. The simulations are conducted under planar elongational flow, which affects the dispersion of the NPs and the self-assembly morphology. The goal of this study is to investigate the effect of planar elongational flow on the nanocomposite blend system as well as to thoroughly compare the blend to an analogous symmetric block copolymer (BCP) system to understand the role of the polymer structure on the morphology and NP dispersion. Two types of spherical NPs are considered: (1) selective NPs that are attracted to one of the polymer components and (2) nonselective NPs that are neutral to both components. A comparison of the blend and BCP systems reveals that for selective NP, the blend system shows a much broader NP distribution in the selective phase than the BCP phase. This is due to a more uniform distribution of polymer chain ends throughout the selective phase in the blend system than the BCP system. For nonselective NP, the blend and BCP systems show similar results for low elongation rates, but the NP peak in the BCP system broadens as elongation rates approach the order-disorder transition. In addition, the presence of NP is found to affect the morphology transitions of both the blend and BCP systems, depending on the NP type.
Collapse
Affiliation(s)
- George L Shebert
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Yong Lak Joo
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
13
|
Zheng Z, Wang Z, Wang L, Liu J, Wu Y, Zhang L. Dispersion and shear-induced orientation of anisotropic nanoparticle filled polymer nanocomposites: insights from molecular dynamics simulation. NANOTECHNOLOGY 2016; 27:265704. [PMID: 27196704 DOI: 10.1088/0957-4484/27/26/265704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Although a large number of studies have been performed to study the dispersion behavior of spherical nanoparticles (NPs) in the polymer matrix, little effort has been directed to anisotropic NPs via simulation, which is convenient for controlling the physical parameters compared to experiment. In this work we adopt molecular dynamics simulation to study polymer nanocomposites filled with anisotropic NPs such as graphene and carbon nanotubes (CNTs). We investigate the effects of the grafting position, grafting density, the length and flexibility of the grafted chains on the dispersion of graphene and CNTs. In particular, we find that when the grafting position is located on the surface center of the graphene or the middle of the CNT, the dispersion state is the best, leading to the greatest stress-strain behavior. Meanwhile, the mechanical property can be further strengthened by introducing chemical couplings in the interfacial region, by chemically tethering the grafted chains to the matrix chains. To monitor the processing effect, we exert a dynamic periodic shear deformation in the x direction with its gradient in the y direction. Polymer chains are found to align in the x direction, graphene sheets align in the xoz plane and CNTs orientate in the z direction. We study the effects of the shear amplitude, the shear frequency, polymer-NP interaction strength and volume fraction of NPs on the stress-strain behavior. We also observe that the relaxation process following the shear deformation deteriorates the mechanical performance, resulting from the disorientation of polymer chains and NPs. In general, this work could provide valuable guidance in manipulating the distribution and alignment of graphene and CNTs in the polymer matrix.
Collapse
Affiliation(s)
- Zijian Zheng
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, People's Republic of China. Beijing Engineering Research Center of Advanced Elastomers, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Dong J, Goldthorpe IA, Abukhdeir NM. Automated quantification of one-dimensional nanostructure alignment on surfaces. NANOTECHNOLOGY 2016; 27:235701. [PMID: 27119552 DOI: 10.1088/0957-4484/27/23/235701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A method for automated quantification of the alignment of one-dimensional (1D) nanostructures from microscopy imaging is presented. Nanostructure alignment metrics are formulated and shown to be able to rigorously quantify the orientational order of nanostructures within a two-dimensional domain (surface). A complementary image processing method is also presented which enables robust processing of microscopy images where overlapping nanostructures might be present. Scanning electron microscopy (SEM) images of nanowire-covered surfaces are analyzed using the presented methods and it is shown that past single parameter alignment metrics are insufficient for highly aligned domains. Through the use of multiple parameter alignment metrics, automated quantitative analysis of SEM images is shown to be possible and the alignment characteristics of different samples are able to be quantitatively compared using a similarity metric. The results of this work provide researchers in nanoscience and nanotechnology with a rigorous method for the determination of structure/property relationships, where alignment of 1D nanostructures is significant.
Collapse
Affiliation(s)
- Jianjin Dong
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada. Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|
15
|
Ahmad I, Jansen HP, Zandvliet HJW, Kooij ES. Hydrodynamic confinement and capillary alignment of gold nanorods. NANOTECHNOLOGY 2016; 27:025301. [PMID: 26630013 DOI: 10.1088/0957-4484/27/2/025301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Controlling the alignment and orientation of nanorods on various surfaces poses major challenges. In this work, we investigate hydrodynamic confinement and capillary alignment of gold nanorod assembly on chemically stripe-patterned substrates. The surface patterns consist of alternating hydrophilic and hydrophobic micrometer wide stripes; a macroscopic wettability gradient enables controlling the dynamics of deposited suspension droplets. We show that drying of residual liquid on the hydrophilic stripes gives rise to spatially localized deposition and alignment of the nanorods. Moreover, a universal relation between the extent of order within the single layers of nanoparticles and the lateral dimension of the deposits is presented and discussed.
Collapse
Affiliation(s)
- Imtiaz Ahmad
- Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, NL-7500AE Enschede, The Netherlands
| | | | | | | |
Collapse
|
16
|
Gao Y, Cao D, Liu J, Shen J, Wu Y, Zhang L. Molecular dynamics simulation of the conductivity mechanism of nanorod filled polymer nanocomposites. Phys Chem Chem Phys 2015; 17:22959-68. [PMID: 26267833 DOI: 10.1039/c5cp01953b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We adopted molecular dynamics simulation to study the conductive property of nanorod-filled polymer nanocomposites by focusing on the effects of the interfacial interaction, aspect ratio of the fillers, external shear field, filler-filler interaction and temperature. The variation of the percolation threshold is anti N-type with increasing interfacial interaction. It decreases with an increase in the aspect ratio. At an intermediate filler-filler interaction, a minimum percolation threshold appears. The percolation threshold decreases to a plateau with temperature. At low interfacial interaction, the effect of an external shear field on the homogeneous probability is negligible; however, the directional probability increases with shear rate. Moreover, the difference in conductivity probabilities is reduced for different interfacial interactions under shear. Under shear, the decrease or increase of conductivity probability depends on the initial dispersion state. However, the steady-state conductivity is independent of the initial state for different interfacial interactions. In particular, the evolution of the conductivity network structure under shear is investigated. In short, this study may provide rational tuning methods to obtain nanorod-filled polymer nanocomposites with high conductivity.
Collapse
Affiliation(s)
- Yangyang Gao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
17
|
Hajizadeh E, Todd BD, Daivis PJ. A molecular dynamics investigation of the planar elongational rheology of chemically identical dendrimer-linear polymer blends. J Chem Phys 2015; 142:174911. [DOI: 10.1063/1.4919654] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|